1x5=5

2018

MCA

MCA: 2.5

COMPUTER ORIENTED NUMERICAL METHODS

Full Marks: 75
Time: 3 Hour

The figures in the margin indicate full marks for the questions:

1. Answer the following questions:

(a)		e Gauss elimination method for solving a system of liner algebraic
	equa	tions, triangularaization leads to,
	(i)	Diagonal matrix.
	(ii)	Lower triangular matrix.
	(iii)	Upper triangular matrix.
	(iv)	Singular matrix.
(b)	If f(x)	f(a) = 0 has a root between a & b than $f(a) & f(b)$ are ofsigns,
	(i)	Opposite
	(ii)	Same
	(iii)	Negative
	(iv)	Positive
(c)	Gaus	s Elimination Method and Gauss Jordan Method aremethods.
	(i)	Direct
	(ii)	Indirect
	(iii)	Self correcting
	(iv)	Step by step
(d)	The f	orward difference operator is denoted by the symbol
	(i)	Delta
		1 P.T.O

- Omega
- Nabla
- Infinite
- (e) Lagrange's interpolation formula is used to compute the values for.....intervals.
 - (i) Equal
 - Unequal
 - Open
 - Closed

2. Answer the following questions:

2x5 = 10

- (a) Evaluate, $\Delta^2(e^{ax+b})$
- (b) Show that, $\Delta = \nabla E = \delta E^{1/2}$
- (c) Write down the Runge-Kurtta method of 4th order.
- (d) Using Newton's forward difference formulae for the first and second order derivation at the value $x = x_0$ up to fourth order difference term.
- (e) State Simpson's one third rule.

3. Answer any six questons of the following:

6x10=60

(a) Use the secant method to estimate the root of the equation,

- $x^2 4x 10 = 0$ with the initial estimates of $x_1 = 4$ & $x_2 = 2$. (b) Evaluate $\int_0^2 \frac{dx}{x^3 + x + 1}$ by Simpson's $\frac{3}{8}$ rule with h = 0.25 & 0.50
- (c) Find $\frac{dy}{dx}$ & $\frac{d^2y}{dx^2}$ at x = 1 from the following table,

X	0.7	0.8	0.9	1.0	1.1	1.2	1.3
f(x)	0.644218	0.717356	0.783327	0.841471	0.891207	0.932039	0.963558

(d) For the date,

X	-4	-2	0	2	4	6
f(x)	-139	-21	1	23	141	451

Construct forward and backward difference tables. Using the corresponding interpolation show that the interpolating polynomial is same.

- (e) Solve the equation $\frac{dy}{dx} = x + y$ with initial condition $y^{(0)} = 1$. Runge-Kurtta rule from x = 0 to x = 0.4 with h = 01.
- (f) Compute f(0.3) & f(0.5) for the date,

X	0	1	3	4	7
f(x)	1	3	49	129	8 13

Using Newton's divided difference formula.

(g) Interpolate the value of the function corresponding to x = 4 using Lagrange's interpolating formulae from the following set of date:

X	2	3	5	8	12
f(x)	10	15	25	40	60

++++