2018

FORMAL LANGUAGE AND AUTOMATA THEORY

MCA:3.5 Full Marks: 75

Time: 3 Hours

The figures in the margin indicates full marks for the questions: (All Questions Are Compulsory)

1. Answer the following:

1X10=10

- (i) The output of the Mealy machine depends on
 - (a) the present state only
 - (b) the present state and the input symbol
 - (c) the input symbol only
 - (d) none of these
- (ii) The language accepted by PDA is
 - (a) Type 0
 - (b) Type 1
 - (c)Type 2
 - (c) Type 3
- (iii) A Moorey Machine accepts a string w of length k. The length of the output string is
 - (a) k+1
 - (b) k-1
 - (c) k
 - $(d) k^2$
- (iv) The regular set denoted by the Regular Expression (a+b) + (a+b) is
 - (a) $\{a,b\}$
 - (b) {a,b,ab,ba}
 - (c) {aa,ab,ba,bb}
 - (d) {a,b,bb,aa}

- (v) The Proof of Pumping Lemma is an example of
 - (a) iteration
 - (b) recursion
 - (c) Pigeon hole principle
 - (d) all of the above
- (vi) A regular expression representing the language $\{ \epsilon, a, b \}$ is
 - (a) a+b

(b) ab

(c) ϵ ab

- (d) ε +a+b
- (vii) A regular expression (0+1)(0+1).....(0+1) k times can be represented by a Finite Automata with
 - (a) exactly k states
 - (b) exactly k+1 states
 - (c) less than k states
 - (d) cannot be determined
- (viii) The CFL L= $\{a^nb^n/n \ge 0\}$ can be generated by the following CFG
 - (a) S→ε/ab/aSb
 - (b) S→ab/aSb
 - (c) S→ε/aSb
 - (d) all of the above
- (ix) The Regular expression corresponding to CFG S→aS/bS/a/b is
 - (a) a+b
 - (b)(a+b)*
 - (c)(a+b)*(a+b)
 - (d) none of the above
- (x) A Type 0 language is accepted by a
 - (a) Pushdown automata
- (b) Finite automata
 - (c) Turing machine
- (d) none of the above
- 2. Answer the following:

3X10=30

P.T.O.

(a) Show that the grammar $S\rightarrow a/abSb/aAb$, $A\rightarrow bS/aAAb$ is ambigious.

2

- (b) Design a DFA for the set of strings over {a,b,} odd no's of a's and odd no of b's.
- (c) Prove the following Identity- ϕ +R=R+ ϕ
- (d) Find the following regular expression:
- (i) the set of all strings containing at least 2a's over {a,b}
- (ii) the set of strings over {0,1} containing alternate 0,s and 1's.
- (e)Construct a regular grammer G generating the regular set represented by

P=a*b(a+b)*.

(f) Construct a finite automata without null moves-

- (g) Describe the model of a PDA.
- (h) Construct a Finite Automata for the Regular Expression (ab+c*)*bb.
- (i) Find a Regular Expression corresponding to the following Finite Automata

- (j) Define Mealy and Moore machine.
- 3. Answer the following (Any five):

5X7=35

- (a) Show that $L=\{0^i1^i/i\ge 1\}$ is not regular.
- (b) What is CNF? Find a grammar in CNF equivalent to $S \rightarrow aAbB$, $A \rightarrow aA/a$, $B \rightarrow bB/b$.

- (c) Construct a PDA accepting {anbman / m,n?1} by null store. Construct the corresponding contex-free grammar accepting the same set.
- (d) If L is regular then LT is also regular.

(e) Find

(i)Leftmost derivation and

(ii)Rightmost derivation

for the string aaabbabbba of Grammar G S-aB/bA, A-a/aS/bAA, B-b/bS/aBB

- (f) Construct an equivalent DFA with reduced states equivalent to the Regular Expression 10 + (0 + 11)0*1.
- (g) Define Chomosky Classification of Languages.
- (h) construct a minimum state automaton equivalent to the finite automata from the given transition table:

State/Σ	0	1
q_0	q_1	q_2
q_1	q_4	q_3
q ₂ *	q_4	q_3
q ₃ *	q ₅	q_6
q_4	q ₇	q_6
q_5	q_3	q_6
q ₆	q 6	q_6
q ₇	q_4	q_6
