2016 **MCA** MCA 2.3

COMPUTER BASED OPTIMIZATION TECHNIQUE

Full Marks: 75 Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. Answer any five questions:
 - a) Write two definitions of Operation Research. Explain the characteristic of OR. 2 + 5 = 7
 - b) Solve the following LPP by Graphical method 8

Maximize
$$Z = x_1 - 2x_2$$

Subject to $-x_1 + x_2 \le 1$
 $6x_1 + 4x_2 \ge 24$
 $0 \le x_1 \le 5, 2 \le x_2 \le 4$

- 2. (a) What are the slack, surplus and artificial variable? Explain with example. $2 \times 3 = 6$
 - (b) Use Simplex method to solve the following problem 9

Maximize
$$Z = 2x_1 + 5x_2$$

Subject to $x_1 + 4x_2 \le 24$
 $3x_1 + x_2 \le 21$
 $x_1 + x_2 \le 9$
 $x_1 + x_2 \ge 0$
(1)

P.T.O.

- 3. (a) Define non-degenerate basic feasible solution for transportation problem.
 - (b) Find the optimum solution to the following transportation problem in which the cells contain the transportation cost in rupees.

	W_{i}	W_2	W_3	W_4	W.	Available
\mathbf{F}_{1}	7	6	4	5	9	40
\mathbf{F}_{2}	8	5 ·	6	7	8	30
\mathbf{F}_{3}^{2}	6	8	9	6	5	20
\mathbf{F}_{4}	5	7	7	8	6.	10
Required	30	30	15	20	5	100 (total)

- 4. (a) Write the definition of Assignment problem.
 - (b) Solve the following assignment problem 13

	I '	II	Ш	IV	V
1	11	17	8	16	20
2	9	7	12_	6	15
3	13	16	15	12	16
4	21	24	17	28	26
5	14	10	12	11	13

5. (a) Construct the dual of the problem

Maximize
$$Z = 3x_1 + 10x_2 + 2x_3$$

Subject to
$$2x_1 + 3x_2 + 2x_3 \le 7$$

$$3x_1 - 2x_2 + 4x_3 = 3$$

$$x_1, x_2, x_3 \ge 0$$

(b) Solve by dual simplex method of the following problem

Maximize
$$Z = 2x_1 + 2x_2 + 4x_3$$

Subject to
$$2x_1 + 3x_2 + 5x_3 \ge 2$$

$$3x_1 + x_2 + 7x_3 \le 3$$

$$x_1 + 4x_2 + 6x_3 \le 5$$

$$x_1, x_2, x_3 \ge 0$$

6. Use Branch and Bound technique to solve the following problem 15

Maximize
$$Z = 7x_1 + 9x_2$$

Subject to
$$-x_1 + 3x_2 \le 6$$

$$7x_1 + x_2 \le 35$$

$$0 \le x_1, \ x_2 \le 7$$

$$x_1, x_2$$
 are integus

7. Find the shortest path from vertex A to B along ares joining various vertices lying between A and B. Length of the path is given 15

8. A self-service store employs one cashier at its counter.

Nine customers arrive on an average every 5 minutes while
the cashier can serve 10 customers in 5 minutes.

Assuming poission distribution for arrival rate and

5

inponential distribution for service time, find

$$3 \times 5 = 15$$

- 1. Average number of customers in the system
- 2. Average number of customers in the queue
- 3. Average time a customers spends in the system.

— × —