2016

MCA

MCA 2.4

GRAPH THEORY

Full Marks: 75

Time: 3 hours

The figures in the margin indicate full marks for the questions

1. Attempt the following parts:

 $1 \times 5 = 5$

- a. The minimum number of edges in a connected graph with n vertices is,
 - i) (n-1)
 - ii) n
 - iii) (n+1)
 - iv) None of these
- b. In a directed graph,
 - i) Direction are fixed
 - ii) Underlying is fixed
 - iii) Both (i) and (ii)
 - iv) None of (i) and (ii)
- c. Maximum number of edges in an n-nodes undirected complete graph is,
 - i) n^2
 - ii) $\frac{n(n-1)}{2}$

iii) (n-1)

iv)
$$\frac{n(n+1)}{2}$$

- d. Consider a simple connected graph with n vertices and n edges (n > 2). Then which of the following statements are true,
 - i) G has a cycle.
 - ii) G has at least one cycle.
 - iii) The graph obtained by removing any edge from G is not connected.
 - iv) None.
- e. A connected acyclic graph G is
 - i) Acyclic graph
 - ii) Tree
 - iii) Open graph
 - iv) Close graph
- 2. Attempt any five parts of the following:

$$2 \times 5 = 10$$

P.T.O.

- a. Define complement of a graph and infinite graph with example.
- b. Show that there is only one path between every pair of vertices in a tree.
- c. Give an example of a graph having Euler's circuit and Hamiltonian circuit both.
- d. Define edge connectivity and vertex connectivity of a graph.
- e. Consider the below graph G

Find the degree of each vertex and verify that the sum of the degrees of the vertices twice of the number of edges.

f. List all cut-sets with respect to the following graph.

3. Attempt any Six parts of the following:

$$4 \times 6 = 24$$

- a. Show that tree with n vertices has (n-1) edges.
- b. Apply Prime's algorithm to find a minimal spanning tree of the following graph.

c. When two graphs are said to be isomorphic? Whether the following graphs are isomorphic or not. Explain your answer.

- d. Prove that a simple graph with n vertices and k components can have at most $\frac{(n-k)(n-k+1)}{2}$ edges.
- e. Apply Dijkstra algorithm to find out the shortest path from the vertices a to z in the following graph

- f. Show that if a connected graph is an Euler graph then all vertices of G are of even degree.
- g. Define network flows. Prove that maximum flow possible between two vertices a and b in network is equal to the minimum of capacities of all cut-sets respect to a and b.
- 4. Attempt all parts of the following:
- $6 \times 6 = 36$
- a. State and prove the five colour theorem of a graph.
- b. Define label graph. Show that the number of n-vertices labeled trees is n^{n-2} , for $n \ge 2$.

c. Define the Chromatic polynomial of a graph G. Find the Chromatic polynomial of the following graph.

- d. Give the definition of planar graph. Show that the complete graph of five vertices is non-planar.
- e. Write down the steps of elementary reduction for detecting the planarity.
- f. Define following with one example each.
 - i) Circuit matrix
 - ii) Path matrix
 - iii) Adjacency matrix.

___ × ___