63/1 (SEM-3) CC6/MATHC3066

2023

MATHEMATICS

Paper: MATHC3066

(Group Theory—I)

Full Marks: 80
Pass Marks: 32

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. Choose the correct answer from the following (any six): 1×6=6
 - (a) The order of the symmetric group S_7 is
 - (i) 720
 - (ii) 5040
 - (iii) 120
 - (iv) 1440
 - (b) The inverse of the element 7 in the group \mathbb{Z}_{12} is
 - (i) 5
 - (ii) 6
 - (iii) 7
 - (iv) 12

- (c) If n is a prime number, then the set $\{1, 2, 3, ..., n\}$ is a group under the
 - (i) composition of addition of integers
 - (ii) composition of multiplication of integers
 - (iii) composition of multiplication modulo n
 - (iv) composition of addition modulo n
- (d) The permutation (1243)(3521) is
 - (i) even
 - (ii) odd
 - (iii) neither even nor odd
 - (iv) both even and odd
- (e) Let G be a group and $a \in G$ such that |a| = n. If $a^k = e$, where e is the identity element of G, then
 - (i) n divides k-1
 - (ii) k divides n
 - (iii) n does not divide k
 - (iv) n divides k

- (f) Let G be the group such that G = Z(G). Then
 - (i) G is not an abelian group
 - (ii) G is not a finite group
 - (iii) G is an abelian group
 - (iv) G is a finite group
- (g) In the cyclic group $(\mathbb{Z}, +)$
 - (i) 1 is a generator but not -1
 - (ii) -1 is a generator but not 1
 - (iii) both 1 and -1 are generators
 - (iv) neither 1 nor -1 is a generator
- (h) The number of elements in the dihedral group D_6 is
 - (i) 10
 - (ii) 11
 - (iii) 12
 - (iv) 13

24KB/86

- (i) The identity element of a factor group $\frac{G}{H}$ is
 - (i) H
 - (ii) G
 - (iii) $\frac{G}{H}$
 - (iv) same as the identity element of G
- (j) If N is a normal subgroup of a finite group G, then
 - (i) $\left| \frac{G}{N} \right| > \frac{|G|}{|N|}$
 - (ii) $\left| \frac{G}{N} \right| < \frac{|G|}{|N|}$
 - (iii) $\left| \frac{G}{N} \right| = \frac{|G|}{|N|}$
 - (iv) $\left| \frac{G}{N} \right| \neq \frac{|G|}{|N|}$
- 2. Answer any five of the following questions:
 - (a) Give an example of a group with 105
 - (b) Find the order of the permutation (1235)(24567).

- (c) In a group, prove that the right cancellation law holds.
- (d) Let $G = \{2^m : m \in \mathbb{Z}\}$ and $\varphi : \mathbb{Z} \to G$ be defined by $\varphi(n) = 2^n$, $n \in \mathbb{Z}$. Check whether φ is a homomorphism.
- (e) If $\alpha = (21)(45)$ is an element of S_5 , then find α^2 .
- (f) Examine if the set of all real numbers is a group under the composition of multiplication of real numbers.
- (g) Compute $\mathbb{Z}_5 \oplus \mathbb{Z}_8$.
- 3. Answer any six of the following questions: $5\times6=30$
 - (a) Prove that the disjoint cycles of a permutation commute.
 - (b) Prove that the set of all 2 × 2 matrices with determinant 1 and having entries from the set of all rational numbers is a non-abelian group under matrix multiplication.
 - (c) Let H be a non-empty finite subset of a group G. If H is closed under the operation of G, then prove that H is a subgroup of G.

- (d) Let G be a group and $a \in G$. Prove that the centralizer of a is a subgroup of G.
- (e) Let f be a function from the group (\mathbb{R}^+, \times) to the group $(\mathbb{R}, +)$ defined by $f(x) = \log_{10} x$, $x \in \mathbb{R}^+$. Show that f is an isomorphism. (Here \mathbb{R}^+ is the set of all positive reals)
- (f) Let H be a subgroup of a group G. Prove that any two right cosets of H in G are either disjoint or identical.
- (g) Suppose G is an abelian group with an odd number of elements. Show that the product of all elements of G is the identity element.
- (h) Show that the set $G = \{1, 3\}$ is a group under multiplication modulo 4.
- (i) Find all the distinct left cosets of $H = \{1, 11\}$ in U(30).
- (j) Prove that a subgroup N of a group G is a normal subgroup of G if and only if $xNx^{-1} = N$ for all $x \in G$.
- 4. Answer any two of the following questions:

(a) Let G be a finite abelian group and p be a prime that divides the order of G. Prove that G has an element of order p. 10

- (b) (i) Find the centre of the symmetric group S_3 .
 - (ii) The set {5, 15, 25, 35} is a group under multiplication modulo 40. Find the identity element.
- (c) (i) Show that a subgroup of index 2 in a group G is a normal subgroup of G.
 - (ii) If a and b are two elements of a group G, then show that $(ab)^{-1} = b^{-1}a^{-1}$.
- (d) State and prove Cayley's theorem. 1+9=10
- **5.** Answer any *one* of the following questions: 14
 - (a) (i) Let H and K be two subgroups of a group G, where H is normal in G. Prove that

$$\frac{HK}{H} \cong \frac{K}{H \cap K}$$

(ii) Let a be an element of order n in a group and let k be a positive integer. Prove that $\langle a^k \rangle = \langle a^{\gcd(n, k)} \rangle$ and

$$|a^k| = \frac{n}{\gcd(n, k)}$$
 4+3=7

24KB**/86**

(Turn Over)

7

3

5

(b)	(i)	Let $f: G \to G'$ be a homomorphism.
		Let $a \in G$ be such that $ a = n$
		and $ f(a) = m$. Show that $ f(a) $
		divides $ a $. Also, show that f is
		one-one if and only if $m = n$. $3+5=8$

- (ii) Let e be the identity of a group G. If $x \in G$ is such that $x^2 \neq e$ and $x^6 = e$, then prove that $x^4 \neq e$ and $x^5 \neq e$. What can you say about the order of x? 5+1=6
- (c) (i) Let G be a finite group and $a \in G$. Prove that $a^{|G|} = e$, where e is the identity element of G.
 - (ii) Let $f: G \to G'$ be an isomorphism and $a \in G$. Prove that $G = \langle a \rangle$ if and only if $G' = \langle f(a) \rangle$.

5

(iii) Let G be an abelian group. Let $H = \{x \in G \mid x^2 = e\}$. Then prove that H is a subgroup of G.

* * *