63/1 (SEM-3) SEC1/MATSE3012

2023

MATHEMATICS

Paper: MATSE3012

(Analytical Geometry)

Full Marks: 50
Pass Marks: 20

Time: 2 hours

The figures in the margin indicate full marks for the questions

- 1. Choose the correct answer (any five): $1 \times 5 = 5$
 - (a) The focus and vertex of a parabola $y^2 = 4x$ are
 - (i) (2, 0), (0, 2)
 - (ii) (1,0), (0,0)
 - (iii) (0, 1), (0, 0)
 - (iv) (0, 2), (0, 0)
 - (b) Under what condition a general equation of second degree

$$ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$$

represents a hyperbola?

- (i) $ab-h^2=0$
- (ii) $ab h^2 > 0$
- (iii) $ab-h^2<0$
- (iv) a=b and h=0

(c) What is the eccentricity of the ellipse

$$\frac{x^2}{16} + \frac{y^2}{9} = 1?$$

- (i) $\frac{7}{4}$
- (ii) $\frac{\sqrt{7}}{4}$
- (iii) $\frac{7}{16}$
- (iv) $\sqrt{\frac{7}{4}}$
- (d) The radius of the sphere given by

$$x^2 + y^2 + z^2 + 3x - 4y + 5z + 5 = 0$$

is

- (i) $\frac{1}{2}\sqrt{30}$
- (ii) √30
- (iii) $\frac{\sqrt{30}}{4}$
- (iv) $\frac{3}{2}$

(e) What is the nature of the following surface given by the equation:

$$9x^2 + 36y^2 + 4z^2 - 36x + 216y + 32z + 388 = 0$$
?

- (i) A come
- (ii) A paraboloid
- (iii) An ellipsoid
- (iv) A hyperboloid
- (f) The eccentricity of the ellipse

$$\frac{x^2}{25} + \frac{y^2}{9} = 1$$

is

- (i) 25
- (ii) $\frac{5}{4}$
- (iii) $\frac{4}{5}$
- (iv) 9
- (g) The length of the latus rectum of the parabola $y^2 = 12x$ is
 - (i) 12
 - (ii) 4
 - (iii) 10
 - (iv) 6

The focii and vertices of the hyperbola

$$\frac{x^2}{16} - \frac{y^2}{9} = 1$$

are

- $(\pm 5, 0), (0, 0)$
- $(\pm 5, 0), (\pm 4, 0)$
- $(\pm 2, 0), (\pm 4, 0)$
- (iv) $(\pm 3, 0), (\pm 4, 0)$
- The equation of the ellipse where given vertices (±6, 0) and focii (±4, 0) is

(i)
$$\frac{x^2}{9} + \frac{y^2}{25} = 1$$

- (ii) $\frac{x^2}{25} + \frac{y^2}{9} = 1$
- (iii) $\frac{x^2}{36} + \frac{y^2}{20} = 1$
- (iv) $\frac{x^2}{20} + \frac{y^2}{36} = 1$

The equation of the hyperbola where (i) vertices $(0, \pm 5)$, focii $(0, \pm 8)$ is

(i)
$$\frac{y^2}{25} - \frac{x^2}{39} = 1$$

(i)
$$\frac{y^2}{25} - \frac{x^2}{39} = 1$$
 (ii) $\frac{y^2}{25} - \frac{x^2}{9} = 1$

(iii)
$$\frac{y^2}{16} - \frac{x^2}{9} = 1$$

(iii)
$$\frac{y^2}{16} - \frac{x^2}{9} = 1$$
 (iv) $\frac{y^2}{4} - \frac{x^2}{5} = 1$

- 2. Answer any five of the following questions: $2 \times 5 = 10$
 - If $(at_1^2, 2at_1)$ and $(at_2^2, 2at_2)$ be the extremities of any focal chord, prove that $t_1 t_2 = -1$.
 - Find the condition that the line k + my = n is a tangent to the ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

- Sketch the curve : $x = (y-2)^2 + 2$
- Find the eccentricity and the focii of the hyperbola $4x^2 - 9y^2 = 36$.
- Find the equation of the sphere whose centre is (1, 2, 3) and radius 4.
- Define a cone. What do you mean by the vertex and the guiding curve of a cone?
- Find the centre and radius of the sphere

$$x^2 + y^2 + z^2 + 2x - 4y + 2z - 3 = 0$$

- 3. Answer any five of the following questions: 5×5=25
 - Find the equation of the parabola whose focus is the origin and whose directrix is the line 2x+y-1=0 and sketch the parabola.
 - (b) Prove that the line lx + my = n is a normal to the ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text{ if } \frac{a^2}{l^2} + \frac{b^2}{m^2} = \frac{(a^2 - b^2)^2}{n^2}$$

If the line $x\cos\alpha + y\sin\alpha = \rho$ touches the ellipse $\frac{y^2}{a^2} + \frac{x^2}{b^2} = 1$, show that

$$a^2\cos\alpha+b^2\sin\alpha=p^2$$

Reduce the following equation of a conic to its standard form :

$$14x^2 + 4xy + 11y^2 - 44x - 58y + 71 = 0$$

- Find the equation of the sphere through the circle $x^2 + y^2 + z^2 = 25$, x+2y-z+2=0 and the point (1, 1, 1).
- Find the equation of the cone whose vertex is (α, β, γ) and the guiding curve is the conic z=0, f(x, y)=0
- The axis of a right circular cylinder is

$$\frac{x-1}{2} = \frac{y-2}{-1} = \frac{z-3}{2}$$

and its radius of 5. Find its equation.

Find the equation of the cylinder generated by the lines parallel to the line

$$\frac{x}{1} = \frac{y}{2} = \frac{z}{1}$$

and intersecting the guiding curve z=3, $x^2+u^2=4$.

(i) Write down the conditions under which the equation

$$ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$$

represents—

- (i) a parabola;
- *(ii)* an ellipse:
- (iii) a hyperbola;
- (iv) a circle;
- (v) a pair of straight lines.
- 4. Answer any one of the following questions:
 - (i) Prove that the (a) product perpendiculars from focii to any tangent to the hyperbola

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

is constant.

(ii) Prove that there is no portion of the ellipsoid

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

beyond the two planes

$$z=+c$$
 and $z=-c$

5

5

10

(b) (i) Find the equation of the cylinder generated by lines parallel to the lines

$$\frac{x}{l} = \frac{y}{m} = \frac{z}{n}$$

whose guiding curve is the conic

$$z = 0$$
, $ax^2 + 2hxy + by^2 = 1$

5

(ii) Find the equation of the sphere passing through the origin and the points at which the plane

$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$

touches the coordinate axes. Hence find the centre and radius of the sphere.

5

(c) Prove that the plane ax + by + cz = 0cuts the cone yz + zx + xy = 0 in perpendicular generators, if

$$\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = 0$$

* * *