63/1 (SEM-3) CC5/MATHC3056

2023

MATHEMATICS

Paper: MATHC3056

(Theory of Real Functions)

Full Marks: 80
Pass Marks: 32

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. Choose the correct answer from the following (any six): 1×6=6
 - (a) For the open interval A = (0, 1), which of the following is correct?
 - (i) 0 is not the cluster point of A
 - (ii) Only 0 and 1 are cluster points of A
 - (iii) Every point of the closed interval [0, 1] is a cluster point of A
 - (iv) A has no cluster points

- (b) $\lim_{x\to 0} \frac{a^x-1}{x}$ where a>0 is equal to
 - (i) 0
 - (ii) 1
 - (iii) log a
 - (iv) e^a
- (c) Let I be an interval and $f: I \to \mathbb{R}$ be continuous on I. Then the set f(I) is
 - (i) a finite set
 - (ii) an empty set
 - (iii) an interval
 - (iv) None of the above
- (d) If $f: I \to \mathbb{R}$ be a continuous function at the point c, then
 - (i) c is a point of the domain
 - (ii) f(c) must exist
 - (iii) $\lim_{x\to c} f(x) = f(c)$
 - (iv) $\lim_{x\to c} f(x) \neq f(c)$

- (e) Lagrange's mean value theorem can be proved for a function f(x) by applying Rolle's theorem to the function
 - (i) $\phi(x) = f(x) + kx^2$
 - (ii) $\phi(x) = f(x) kx^2$
 - (iii) $\phi(x) = f(x) + kx$
 - (iv) $\phi(x) = \{f(x)\}^2 + kx^2$
- (f) The necessary condition for a function f(x) to have a maxima at x = c is
 - (i) f'(c) > 0
 - (ii) f'(c) = 0
 - (iii) f'(c) < 0
 - (iv) None of the above

- $\sum_{X \in X} x \text{ if } x + 1$ = (x) and another (i)
- (i) continuous for all values of x
- (ii) continuous for all values of x
- cx = x is tespt x = 2
- (iii) discontinuous at x = 1
- (iv) discontinuous at x = 5
- differentiable at x = cA function f(x) is said
- (i) if Rf'(c) and Lf'(c) both exist
- (ii) if only Rf'(c) exist
- (iii) if Lf'(c) do not exist
- are equal (iv) if Rf'(c) and Lf'(c) both exist and
- 5×2=10 2. Answer any five of the following questions:
- (a) Define s-8 definition on limit at a

(Jano mul)

- (9) The (n+1)th term in Maclaurin series
- for the function f(x) is
- $(x)^n \int \frac{n}{\ln x} (ii)$

 $(0)_u f \frac{u^x}{|u|} \quad (iii)$

 $O = (O), f \quad (i)$

(h) If (x) = |x|, then

 $(0)_u f$ (ai)

(iv) None of the above

0 = x is muminim at (x) (iii)

0 = x is mumixem si (x) (ii)

- $(x)_u \int \frac{u}{u^x}$ (1)

- (b) Let f and g be defined on A to \mathbb{R} and c be a cluster point of A. If $\lim_{x\to c} f$ and $\lim_{x\to c} fg$ exist, does it follow that $\lim_{x\to c} g$ exists? Justify your answer by an example.
- (c) Evaluate $\lim_{x\to 1} \frac{\sqrt{x-1}}{x-1} (x>0)$.
- (d) Show that the function f(x) = |x| is continuous at every point $c \in \mathbb{R}$.
- (e) Check whether the equation $f(x) = xe^x 2$ has a root in the interval [0, 1].
- (f) Show that $f(x) = x^{1/3}$, $x \in \mathbb{R}$, is not differentiable at x = 0.
- (g) Find the points of relative extrema for the functions $f(x) = x^2 3x + 5$, defined on \mathbb{R} to \mathbb{R} .
- 3. Answer any six parts from the following questions:

 5×6=30
 - (a) Use $\varepsilon \delta$ definition of a limit to prove $\lim_{x \to c} \frac{1}{x} = \frac{1}{c} \text{ if } c > 0.$

- (b) Let c be a cluster point of $A \subseteq \mathbb{R}$ and let $f: A \to \mathbb{R}$. Prove that $\lim_{x \to c} f(x) = L$ if and only if $\lim_{x \to c} |f(x) L| = 0$.
- (c) Prove that

(i)
$$\lim_{x\to 0^+} \frac{1}{x} = \infty$$

- (ii) $\lim_{x\to\infty}\frac{1}{x^2}=0$
- (d) Let $A \subseteq \mathbb{R}$ and let $f: A \to \mathbb{R}$ be continuous at a point $c \in A$. Show that for any $\epsilon > 0$, there exists a neighbourhood $V_{\delta}(c)$ of c such that if $x, y \in A \cap V_{\delta}(c)$, then $|f(x) f(y)| < \epsilon$.
- (e) Prove that the following function:

$$f(x) = \begin{cases} 1, & \text{if } x \text{ is rational} \\ 0, & \text{if } x \text{ is irrational} \end{cases}$$
 is not continuous at any point of \mathbb{R} .

- - State squeeze theorem. Use it to show that $\lim_{x\to 0} \frac{\sin x}{x} = 1$. 2+3=5

- (g) Give an example of functions f and g that are both discontinuous at a point c in \mathbb{R} such that—
 - (i) the sum f+g is continuous at c
 - (ii) the product fg is continuous at c
- (h) Show that $f(x) = \sin x$ is continuous on \mathbb{R} .
- (i) Determine where the function f(x) = |x| + |x-1| from \mathbb{R} to \mathbb{R} is differentiable and find the derivative.
- (j) State and prove Caratheodory theorem.
- **4.** Answer any two parts from the following: $10 \times 2 = 20$
 - (a) (i) Functions f and g are defined on \mathbb{R}

$$f(x) = x + 1$$
 and $g(x) = \begin{cases} 2, & \text{if } x \neq 1 \\ 0, & \text{if } x = 1 \end{cases}$

Find $\lim_{x\to 1} g(f(x))$ and compare with

the value of $g(\lim_{x\to 1} f(x))$. 3+3=6

(ii) Let $n \in \mathbb{N}$ be such that $n \ge 3$. Derive the inequality $-x^2 \le x^n \le x^2$ for -1 < x < 1. Then use the fact that $\lim_{x \to 0} x^2 = 0$ to show that

 $\lim_{x\to 0}x^n=0.$

- (b) (i) Show that the function $f(x) = \frac{1}{x^2}$ is uniformly continuous on the set $A = [1, \infty)$, but that is not uniformly continuous on $B = (0, \infty)$.
 - (ii) Show that if f and g are uniformly continuous on $A \subseteq \mathbb{R}$, then f + g is uniformly continuous on A.
- (c) (i) State prove Rolle's theorem.
 - (ii) Suppose that f is continuous on the closed interval [a, b], that f is differentiable on the open interval (a, b) and that f'(x) = 0 for $x \in (a, b)$. Then show that f is constant on [a, b].

24KB/85

(Continued)

24KB**/85**

(Turn Over)

6

4

5

5

(d) State and prove Location of Roots theorem and use this theorem to show that the equation $x = \cos x$ has a solution in

 $\left[0,\frac{\pi}{2}\right] \qquad \qquad 2+6+2=10$

- 5. Answer any one part from the following: 14
 - (a) State and prove Darboux's theorem: Suppose that if $f:[0,2] \to \mathbb{R}$ is continuous on [0,2] and differentiable on (0,2), and that f(0)=0, f(1)=1,
 - (i) Show that there exists $c_1 \in (0, 1)$ such that $f'(c_1) = 1$.
 - (ii) Show that there exists $c_2 \in (1, 2)$ such that $f'(c_2) = 0$.
 - (iii) Show that there exists $c \in (0, 2)$ such that $f'(c) = \frac{1}{3}$ 2+4+2+3+3=14

(Continued)

(b) (i) State Maclaurin's series expansion for the function f(x) and obtain the expansion of the function $f(x) = e^x$, showing the convergence of the remainder term after n terms. 2+5=7

(ii) Let $A \subseteq \mathbb{R}$, let $f: A \to \mathbb{R}$ and $g: A \to \mathbb{R}$ and suppose that $(a, \infty) \subseteq A$ for some $a \in \mathbb{R}$. Suppose further that g(x) > 0 for all x > a and that for some $L \in \mathbb{R}$, $L \neq 0$, we have

 $\lim_{x\to\infty}\frac{f(x)}{g(x)}=L$

Show that if L > 0, then $\lim_{x \to \infty} f(x) = \infty$ if and only if $\lim_{x \to \infty} g(x) = \infty$.

(c) (i) Let $h: \mathbb{R} \to \mathbb{R}$, defined by $h(x) = x^3 + 2x + 1$. Show that h is continuous and strictly monotonic increasing on \mathbb{R} . Further deduce that h^{-1} is differentiable on \mathbb{R} . Also find the value $(h^{-1})'(h(1))$.

1+2+3+3=9

7

24KB/85

(Turn Over)

(ii) Let I be an interval and let $f:I\to\mathbb{R}$ be differentiable on I. Show that if f' is negative on I, then f is strictly decreasing on I.

5

* * *