63/1 (SEM-3) CC7/STSHC3076

2023

STATISTICS

Paper: STSHC3076

(Mathematical Analysis)

Full Marks: 60
Pass Marks: 24

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. Choose the correct answer from the following (any five): 1×5=5
 - (a) The set $\{x : a \le x \le b\}$ consisting of a, b and all real numbers lying between a and b is called
 - (i) semi-closed interval
 - (ii) semi-open interval
 - (iii) closed interval
 - (iv) open interval

- (b) If $S_n = \left\{ \frac{(-1)^n}{n}, n \in \mathbb{N} \right\}$, then
 - (i) -1 is the infimum and $\frac{1}{2}$ is the supremum
 - (ii) $\frac{1}{2}$ is the infimum and -1 is the supremum
 - (iii) 0 is the infimum and -1 is the supremum
 - (iv) -1 is the infimum and 0 is the supremum
- (c) The $\lim_{n\to\infty} \frac{1+2+3+\cdots+n}{n^2}$ equals
 - (i) 0
 - (ii) $\frac{1}{2}$
 - (iii) 2
 - (iv) 1
- (d) The function $f(x) = x^2 + 3$, $x \in [-2, 2]$, the value of c for Rolle's theorem is
 - · (i) 1
 - (ii) 2
 - (iii) 0
 - (iv) -1

(e) If Σu_n is a positive term series, such that

$$\lim_{n\to\infty} n\left(\frac{u_n}{u_n+1}-1\right) = l$$

then the series

- (i) converges if l > 1 and diverges if l < 1
- (ii) diverges if l>1 and converges if l<1
- (iii) converges if $l \ge 1$ and diverges if $l \le 1$
- (iv) diverges if $l \ge 1$ and converges if $l \le 1$
- (f) If x^2 is any constant, then $\Delta^2(x^2)$ is
 - (i) 2
 - (ii) 2x
 - (iii) x
 - (iv) 0

- (g) If $f(x) = \frac{x-4}{2\sqrt{x}}$, then f'(1) is
 - (i) $\frac{5}{4}$
 - (ii) $\frac{4}{5}$
 - (iii) 1
 - (iv) 0
- (h) The value of $\Delta^2(x+1)$, the interval of differencing being unity, is
 - (i) 2x
 - (ii) 0
 - *(iii)* 1
 - (iv) 4
- (i) The *n*th difference of a polynomial of degree n is constant, then (n+1)th difference is
 - (i) n
 - (ii) n!
 - (iii) zero
 - (iv) one

- (j) Simpson's one-third rule, the integrand is assumed to be a polynomial of
 - (i) 1st degree
 - (ii) 2nd degree
 - (iii) 3rd degree
 - (iv) 4th degree
- **2.** Answer any *five* of the following questions: $2 \times 5 = 10$
 - (a) Define derived set.
 - (b) Show that the set $s = \{x : 0 < x < 1, x \in R\}$ is open but not closed.
 - (c) Establish the relation between Δ and E.
 - (d) State Rolle's theorem.
 - (e) Prove that $E^2X^2 \neq (EX)^2$.
 - (f) Show that the series $\frac{1}{2} + \frac{2}{3} + \frac{3}{4} + \cdots$ is not convergent.
 - (g) State D'Alembert's ratio test.

(b) State and prove Simpson's $\frac{1}{3}$ rd rule. Using Simpson's $\frac{1}{3}$ rd rule, find the value of

$$\int_0^6 \frac{1}{1+x} dx$$

- (c) Prove that a necessary and sufficient condition for the convergence of a sequence $\{S_n\}$ is that for each $\varepsilon > 0$ there exists a positive integer m such that $|S_{n+p} S_n| < \varepsilon \ \forall \ n \ge m$ and $p \ge 1$.
- (d) State and prove Lagrange's interpolation formula. Apply this formula to evaluate the value of f(4) from the following data:

x : 1 3 7 12

f(x): 4 18 20 25

* * *