63/1 (SEM-3) (GE3/DSC) STSHG/RC3036

2023

STATISTICS

Paper: STSHG3036/STSRC3036

(Statistical Inference)

Full Marks: 60
Pass Marks: 24

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. Choose the correct option from the following (any five): 1×5=5
 - (a) Estimate and estimator are
 - (i) synonyms
 - (ii) different
 - (iii) related to the population
 - (iv) All of the above

- (b) Let $\hat{\theta}$ be the estimator for the parameter θ . Then $\hat{\theta}$ is said to be unbiased for θ if
 - (i) $E(\hat{\theta}) = n\theta$
 - (ii) $E(\hat{\theta}) = \theta$
 - (iii) $E(\hat{\theta}) = \theta^2$
 - (iv) $E(\hat{\theta}) = \hat{\theta}$
- (c) A hypothesis may be classified as
 - (i) simple
 - (ii) composite
 - (iii) null
 - (iv) All of the above
- (d) Area of the critical region depends on
 - (i) size of type I error
 - (ii) size of type II error
 - (iii) value of the statistics
 - (iv) number of observations

- (e) Non-parametric methods are based on
 - (i) mild assumption
 - (ii) stringent assumption
 - (iii) no assumption
 - (iv) Both (i) and (iii)
- (f) Ordinary sign test is used in
 - (i) Poisson distribution
 - (ii) binomial distribution
 - (iii) Both (i) and (ii)
 - (iv) Neither (i) nor (ii)
- (g) If there are zero differences in sign test, they may be
 - (i) discarded
 - (ii) treated half of them as positive
 - (iii) treated half of them as negative
 - (iv) All of the above

- (h) The probability of hyppothesis rejecting H_0 when it is actually true is
 - (i) type I error
 - (ii) type II error
 - (iii) critical regions
 - (iv) Both (i) and (ii)
- (i) Let T_1 and T_2 be two statistics such that $P(T_1 > \theta) = \alpha_1$, $P(T_2 < \theta) = \alpha_2$, where $\alpha_1 + \alpha_2 = \alpha$ then
 - (i) $P(T_1 < \theta < T_2) = 1 \alpha$
 - (ii) $P(T_1 < \theta < T_2) = 1 \alpha^2$
 - (iii) $P(T_1 < \theta < T_2) = 1 + \alpha$
 - (iv) $P(T_1 < \theta < T_2) = 1 + \alpha^2$
- (j) If n_1 and n_2 in Mann-Whitny test are large, the variable v is distributed with mean
 - (i) $\frac{n_2 + n_2}{2}$
 - (ii) $\frac{n_1-n_2}{2}$
 - (iii) $\frac{n_1n_2}{2}$
 - (iv) $n_1 n_2$

- 2. Answer any five from the following: $2 \times 5 = 10$
 - (a) Write down the difference between null and alternative hypotheses.
 - (b) Define the Cramer-Rao inequality.
 - (c) What are the characteristics of a good estimator?
 - (d) What is power of a test?
 - (e) Mention two advantages of nonparametric methods.
 - (f) When do you call a test uniformly most powerful (UMP) test?
 - (g) A random sample $(x_1, x_2, x_3, x_4, x_5)$ of size 5 is drawn from a normal population with mean μ , then prove that $E(t) = \mu$, where

$$t = \frac{x_1 + x_2 + x_3 + x_4 + x_5}{5}$$

- 3. Answer any five from the following: $5\times5=25$
 - (a) Explain the steps in solving test of hypothesis.
 - (b) If x is a Poisson variate with parameter λ , find maximum likelihood estimate (MLE) of λ .

(c) Define efficiency of an estimator. Let $x_1 x_2 \cdots x_n$ is a random sample from a normal population $N(\mu, 1)$. Show that

$$t = \frac{1}{n} \sum_{i=1}^{n} x_i^2$$

is an unbiased estimator of $\mu^2 + 1$.

- (d) Define level of significance and critical region.
- (e) Write a short note on test for randomness.
- (f) What are the basic steps involved in any non-parametric test of hypothesis?
- (g) Distinguish between non-parametric and parametric tests.
- (h) Distinguish between type I and type II errors.
- (i) Discuss the method of moments for estimating the parameters.
- **4.** Answer any two from the following: $10\times2=20$
 - (a) Discuss the method of least square estimation.
 - (b) Describe Wald-Wolfowitz run test for identicalness of two populations.

- (c) Define minimum variance unbiased estimator. Show that a minimum variance unbiased is unique in the sense that if T_1 and T_2 are minimum variance unbiased estimators for $\gamma(\theta)$, then $T_1 = T_2$, almost surely.
- (d) Define the following:
 - (i) Point estimation
 - (ii) Statistical hypothesis
 - (iii) Sample space
 - (iv) Neyman-Pearson lemma
 - (iv) Rao-Blackwell theorem

* * *