$1 \times 6 = 6$

2015 PHYSICS

Paper: 101 (Old Course)

MATHEMATICAL PHYSICS

Full Marks: 80 Time: 3 hours

The figures in the margin indicate full marks for the questions

Answer the following (any six)

Eigen value of the matrix $A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$

1

(a)

	(i) $e^{\pm i\theta}$	(ii) $e^{\pm 2i\theta}$	(iii) $e^{\pm 3i\theta}$	(iv) $e^{\pm i\frac{\theta}{2}}$	
(b)	The eigenvalues of a Hermitian matrix are - (i) Always zero (ii) Complex (iii) Real (iv) None of these				
(c)	The value of (i) $g^{sr}[pq, r]$	Cristoffel's sy (ii) g^{sr} [mbol of 2nd k $[qp,r]$ (i	ind. $\left\{ egin{array}{c} s \\ pq \end{array} \right\}$ ii) $g^{sr}\left[rp,q\right]$	(iii) $g^{sr}[pr,q]$
(d)	If A is a real symmetric matrix, the eigenvalues of A are (i) Complex (ii) Real (iii) of unit magnitude (iv) None of these				
(e)	Legendre polynomials $P_1(x)$ is (i) 1 (ii) x (iii) $\frac{1}{2}(3x^2 - 1)$ (iv) None of these				
(f)	The complex Fourier transformation of a function $f(x)$ is defined as (i) $\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{isx} dx$ (ii) $\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{-isx} dx$ (iv) None of these				
g)	The trace of third eigen v (i) -1	alue is -	x is 1. Two o (iii) 1		es are 1 and 1. The
			(1)		P.T.O.

2 Answer the following (any five)

 $2 \times 5 = 10$

- (a) Evaluate $\delta_q^p A_s^{qr}$ and $\delta_q^p \delta_r^q$.
- (b) Calculate the residue of $f(z) = \frac{1}{z^2(z^2+1)}$ at z = i
- (c) If $X = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ and $Y = \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix}$, $X, Y \in \mathbb{R}^3$, calculate ||x|| and $\langle X, Y \rangle$ The symbols have their usual meanings.
- (d) If F(s) is the complex Fourier transform of f(x), then prove that

$$F\left\{f(ax)\right\} = \frac{1}{a}F\left(\frac{s}{a}\right)$$

- (e) Show that an $n \times n$ orthogonal matrix has $\frac{n(n-1)}{2}$ independent parameters.
- (f) How many generators will SU(3) have? Give an example in physics where SU(3) symmetry is observed.
- (g) Prove that the eigen values of anti-Hermitian operator are imaginary.
- (h) A quantity A(j, k, l, m) which is a function of coordinates x^i transforms to another coordinate system x'^i according to the rule

$$A'(p,q,r,s) = \frac{\partial x^j}{\partial x'^p} \frac{\partial x'^q}{\partial x^k} \frac{\partial x'^r}{\partial x^l} \frac{\partial x'^s}{\partial x^m} A(j,k,l,m)$$

- (i) Is the quantity a tensor? (ii) If so, write the tensor in suitable notation and give the contravariant and covariant order and rank.
- 3 Answer the following (any five)

 $5 \times 5 = 25$

(a) From series representation of Bessel function, show that

$$J_{\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \sin x$$

- (b) Write the law of transformation for the tensors (i) A_{jk}^i , (ii) B_{ijk}^{mn} , (iii) C^m . If A_r^{pq} and B_r^{pq} are tensors, prove that their sum and differences are tensors.
- (c) Using tensorial expression find

$$\operatorname{div} \vec{A}$$

in spherical polar coordinates.

- (d) Discuss the properties of linear vector space in n dimensions.
- (e) Show that $\int_C \frac{1+z}{z(2-z)} dz = \pi i,$

where C is a unit circle with center at the origin of the complex plan.

(2)

P.T.O.

- (f) Prove that
 - (i) $L(e^{at}\cosh bt) = \frac{s-a}{(s-a)^2-b^2}$
 - (ii) L[f'(t)] = sL[f(t)] f(0), where L[f(t)] = F(s)
- 4 Answer the following (any three)

 $3 \times 9 = 27$

- (a) Prove that $\int_{-1}^{1} P_n(x) P_m(x) dx = \frac{2}{2n+1} \delta_{nm}$
- (b) If A_p is a tensor show that the covariant derivative of A_p with respect to x^q i.e. $A_{p,q} = \frac{\partial A_p}{\partial x^q} \left\{ \begin{array}{c} s \\ pq \end{array} \right\} A_s$ is a 2nd rank covariant tensor.
- (c) Diagonalize the following matrix -

$$\left(\begin{array}{cc} 1 & 2i \\ -2i & 1 \end{array}\right)$$

(d) Show that $L\left[\frac{1}{t}f(t)\right] = \int_{s}^{\infty} F(s)ds$, where L[f(t)] = F(s)

Using Laplace transforms, solve the simultaneous differential equations

$$(D+1)y_1 + (D-1)y_2 = e^{-t}$$

$$(D+2)y_1 + (D+1)y_2 = e^{t}$$

where $D = \frac{d}{dt}$ and $y_1(0) = 1$ and $y_2(0) = 0$.

5 Answer the following (any one)

 $1 \times 12 = 12$

(a) Solve the wave equation

$$\frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2}$$

under the condition: u = 0 when x = 0 and $x = \pi$ $\frac{\partial u}{\partial t} = 0$ when t = 0 and $u(x, 0) = x, 0 < x < \pi$

- (b) Evaluate the following integrals using the calculus of residues
 - (i) $\int_0^{2\pi} \frac{\sin^2 \theta}{5-4\cos \theta} d\theta$
 - (ii) $\int_0^\infty \frac{dx}{(1+x^2)^3}$
- (c) Show that permutation of three objects form a non-abelian group S_3 of order six. Obtain the matrix representation of the generators of SU(3).

- X -