2017 PHYSICS

Paper: 403

CONDENSED MATTER PHYSICS-III

Full Marks: 80 Time: 3 hours

The Figures in the margin indicate full marks for the questions

1	Answer the following				
	(a)	Bar			
		(i)	Diffraction spectra		
		(ii)	Absorption spectra		
		(iii)	Debye-Scherrer's method		
		(iv)	Williamson-Hall plot	1	
	(b)	Ιn Ç	Quantum wire, the electrons	•	
		(i)	Momentum is localized.		
		(ii)	Confined in 1D.		
		(iii)	Can move only in one direction.		
		(iv)	None of the above.	1	
	(c)	The	crystallite size of the material is increased		
		(i)	Due to grain boundary movement		
	•	(ii)	Due to lattice strain		
		(iii)	Due to band gap is increased		
		(iv)	None of the above	1	
			1	P.T.O.	

	(d)	Which one of the following technique is not a physical	
	•	deposition technique?	
		(i) Electron beam evaporation	
		(ii) Spray pyrolysis	
		(iii) DC magnetron sputtering	
		(iv) Molecular beam epitaxy	1
	(e)	The grain size of thin film increases with	
		(i) the decreases of deposition time	
		(ii) the increase of the film thickness	
		(iii) the increase of pressure	
	•	(iv) none of the above	1
2.	Ans	swer the following 2×	5=10
	(a)	Explain the effect of substrate temperature on the growth	hof
		thin film?	2
		Explain the various nucleation processes.	2
		Define strong and weak confinement. 2	
		Explain 'super surface activity' of the nano materials	2
_		Explain the term homogeneous and hetrogeneous nuclea	tion.
3.	•		5=25
	(a)	Explain the high surface-to-volume ratio in nanostructur	
		materials? Find the surface-to -volume (A/V) ratio of sp	here,
	. 4.	cylinder and cube.	2+3
	(D)	What is zero dimensional state of electrons? Find the tot	
		energy expression of zero dimensional state.	1+4

(c)	Discuss the superparamagnetic and super-hydrophobicity
	property of the nanomaterials.
(d)	Discuss the various spin dependent scattering in multilayered
	GMR structure.
(e)	Explain the various processes of formation of continuous thin
	film from initial stage.
(f)	Draw a neat diagram of construction of vacuum system and
	hence explain the processes of creating vacuum.
An	swer the following (any four) 10x4=40
(a)	Define quantum wire? Show that the total energy of infinitely
	deep rectangular quantum wire is described by the two principle
	quantum number. 2+8
(b)	What is magnetoresistance? Discuss the origin of GMR and
	show how the resistance vary in Fe/Cr/Fe multilayered GMR
	structure with the size of Cr. 2+6+2
(c)	What is spintronic? Explain the principle of spin transistors
	Discuss the opportunities of spintronic in nanotechnology?
	2+5+3
(d)	How does nanosize influence the electronic band gap? Discuss
	change in the optical absorption spectra as the size of the materia
	is reduced. Define absorption coefficient and explain how band
	can be calculated from absorption spectra. 3+3+4
(e)	Explain the term direct and indirect exchange interaction. Discuss
	the exchange interaction of two electrons and explain the
	exchange interaction criteria for ferromagnetism. 2+8
	(d) (e) (f) An (a) (b) (c) (d)