2015

PHYSICS

Paper: 102 (Old Course)

CLASSICAL MECHANICS

Full Marks: 80

Time: 3 hours

The figures in the margin indicate full marks for the questions

- For a system of N particles, the number of degrees of freedom is
 - (a) N (b) 2N (c) 4N (d) 3N
- 2. A non-holonomic constraint may be expressed in the form of(a) equality (b) inequality (c) vector (d) None of these
- 3. The equation of constraints in the case of particle moving on or outside the surface of a sphere of radius a is:

(a)
$$x^2 + y^2 + z^2 \ge a^2$$
 (b) $x^2 + y^2 + z^2 \le a^2$

c)
$$x^2 = y^2 = z^2$$
 (d) $x^2 + y^2 + z^2 = 1$ (1)

	Answerall	2 x 3	3 = 6
4.	Write down the conditions for a canonical transformation is		
	terms of Poisson bracket.	•	2
5.	What are holonomic and non-holonomic constrai	nts?	2
6.	Write down the Euler-Lagrange equation of motion for a		
	continuous system.		2
	Answer all	5 x 4	=20
7.	By using Lagrange equation, find the equation of	motio	nofa
	compound pendulum in a vertical plane abo	ut a	fixed
	horizontal axis.		5
8.	Define Vorticity and obtain its equation of motion. $2+3=5$		
9.	For a pendulum hung from the ceiling of moving lift according		
	to z(t), find the Lagrangian and Hamiltonian.	2-	+3=5
10.	Establish the Hamilton's equations in terms of Pois	son br	racket.
			5
	Answer any three from the following	9 X :	3=27
11.	State the Euler's theorem and prove the theore	m. 3	8+6=9
12.	Prove that		

[F[G,K]]+[G,[K,F]]+[K,[F,G]]=0

(2)

P.T.O.

13.	State Navier - Stokes equation and obtain its approximation
	solution. 3+6=9
14.	State and establish Bernoulli's theorem. How the theorem is
	modified in case of steady irrotational flow? 2+4+3=9
15.	Explain the term generalized coordinate. Derive Lagrange's
	equation of motion from d'Alemberts principle. 2+7=9
	Answer any two from the following: $12 \times 2 = 24$
16. ((a). Define infinitesimal canonical transformation. What is
	generating function? Find the expression for canonical
	transformation equation corresponding to the first two types
	of generating function. 3+3+6=12
17.	Derive Euler's dynamical equation of a rigid body. Discuss
	the force - free motion of a symmetrical top with its CG
	coinciding with the fixed point by Lagranges equations of
•	motion. What is a 'symmetrical top'? 4+6+2=12
18.	(a). What do you mean by cyclic coordinate. 2
	(b). If the law of force acting on a planet is of the form
	$F(r) = -\frac{k}{r^3} \qquad (k > 0)$
	find the form of the orbit. 5

(3) *P.T.O.*

(c). Set up Hamilton's equations of motion for the Lagrangian

$$L(q,q,t) = m(q^2 \sin^2 \omega t + qq\omega \sin 2\omega t + q^2\omega^2)/2$$
 5

19. What do you mean by chaos and strange attractors. Draw a bifurcation diagram to define the region of chaos.

