PTO

PHYSICS

PHY: 204

CONDENSED MATTER PHYSICS-I

Full Mark: 80

Time: 3 Hours

The figures in the margin indicates full marks for the questions:

1.

Answer the following							
	(a)	The position of the Fermi level in n-type semiconductor a					
		zero is					
	(i)	At the middle of the conduction band and valance band					
	(ii)	At the middle of the conduction band and donor level					
	(iii)	i) At the middle of the valance band and acceptor level					
	(iv) None of the above						
	(b)	The polarization of dielectric material results in					
(i) absorption of electron							
(ii) release of high velocity protons							
(iii) creation of electric dipoles							
(iv) production of eddy currents							
	(c)	At the point of inflection					
	(i) Electrons are completely bounded						

	(ii)	The velocity of the electron is maximum		3.	Ans	wer the following(any five)	5x5=25
	(iii)	Effective mass of electron become zero			(a)	Discuss the quantum theory of paramagneti	sm and obtain an
	(iv)	None of the above	1			expression for susceptibility.	5
	(d)	In a solid or liquid dielectrics, with external applied	electric field,		(b)	Explain the physical phenomenon of dia	amagnetism and
		as the electronic polarizability α_e increases, the inte	ernal field E _i			paramagnetism. Discuss Weiss theory of parama	gnetism and obtain
		(i) increases (ii) decreases				the equation for Curie-Weiss law.	2+3
		(iii) remains unaltered	1		(c)	Show that the atomic scattering factor is equal to	the atomic number
	(e)	The free electron theory completely fails to explain				at zero incident angle.	5
		(i) diamagnetic susceptibility			(d)	Explain the variation of velocity (v) and effective	we mass (m^*) of an
		(ii) heat capacity and the paramagnetic susceptibility	<i>I</i>			electron as a function of k.	5
		(iii) ferromagnetic susceptibility			(e)	Show that the X-ray diffraction in the reciproca	al lattice vectors is
		(iv) heat capacity and the diamagnetic susceptibility	1			$(\vec{S} \vec{S}_{\circ})$	
•	Ans	wer the following	2×5=10			$\left(\frac{\vec{S}}{\lambda} - \frac{\vec{S}_0}{\lambda}\right) = h\vec{b}_1 + k\vec{b}_2 + l\vec{b}_3$	
	(a)	Explain the phenomenon of piezoelectricity.	Name few			(the symbols have their usual meaning)	5
		piezoelectric materials and its usage.	2		(f)	Discuss the various recombination processes	of exited electrons
	(b)	Discuss the variation of conductivity with temperature for an n-				in the conduction band.	5
		type semiconductor.	2	4.	Ans	wer the following(any four)	10x4=40
	(c)	What is Meissner effect?	2		(a)	(i) What are Brillouin zones? Draw the Brillo	ouin zones for two
	(d)	What are hard and soft magnetic materials? Give example for each				dimensional square lattice of side 'a' and expla	in the significance
		and their usage.	2			of the zones.	2+3
	(e)	Find the probability distribution for electrons at absolute zero				(ii) Discuss how the band theory of solid classi	fies the solids into
		temperature for both $E < E_F$ and $E > E_F$.	2 .			conductors, semiconductors and insulators.	5
		2	PTO			3	PTO

PTO

()		
	ferroelectric material.	4
	(ii) Derive Clausius-Mossotti equation and hence obtain	the
	Debye's relation.	6

(b) (i) Explain the phenomenon of spontaneous polarization in

- (c) Distinguish between intrinsic and extrinsic semiconductors. Obtain the Expression carrier concentration for an intrinsic semiconductors
- (d) Define reciprocal lattice? Show that reciprocal lattice (σ_{hkl}) is perpendicular to the (hkl) plane and the value is reciprocal to the interplanar spacing (d_{hkl}) . What is the need of using reciprocal lattice? 2+6+2
- (e) What are symmetry elements in crystal? Discuss the various symmetry operations in a cubic crystal. Define point group symmetry operation.

 2+6+2
