2018

PHYSICS

PHY 302

ATOMIC & MOLECULAR PHYSICS

Full Marks: 80 Time: 3 Hours

(Figures in the margin indicate full marks for the questions)

1	Answer all the following questions	1x6=6
	(a) What are the purposes of using slits in grating spectrometer?	1
	(b) Write the spectral terms for 1s ² 2s ² configuration.	1
	(c) Due to spin-spin interaction, an unperturbed energy level splits into levels.	1
	(d) Why is semiconductor laser less monochromatic than other lasers?	1
	(e) What are the differences between atomic spectra and molecular spectra?	1
	(f) Explain the differences between Stokes and anti-Stokes lines in Raman spectroscopy.	1
2	Answer all the following questions	2x7=14
	(a) Explain what would happened if electrons were spin 0 particles.	2
	1	

- (b) Show that the ${}^4D_{1/2}$ term does not split in magnetic 2 field.

 (c) Evaluate the Lande g-factor and hence calculate the shift 2 in wavenumber for the 3P_1 level of 6C atom in 2p3s configuration when external magnetic field of 0.1 tesla is
- (d)Discuss the differences between emission band spectrum 2 and the corresponding absorption band spectrum.

applied. (Symbols have their usual meaning)

- (e) Explain why spiking occurs in Ruby laser.
- (f) What effects will the presence of isotopic species such as 2 H¹, H², Cl³⁵ and Cl³⁶ have on rotational spectrum of HCl. Explain with suitable energy level diagram.
- (g) What are P, Q and R branches in vibration-rotation 2 spectra? Explain their origin.
- 3 Answer the following questions (any four) 5x4=20
 - (a) What is anomalous Zeeman effect? Show that the 1+4 Zeeman splitting in anomalous Zeeman effect depends on Lande g-factor.
 - (b) Determine the spectral terms for neutral oxygen atom.
 - (c) What is Paschen-Back effect? Deduce an expression for 1+4 the strong- field magnetic interaction energy.
 - (d) Describe the different types of couplings in atoms with 5 illustrative examples to each type.
 - (e) Discuss the Zeeman effect in the following transitions

(i)
$${}^{1}F_{3}-{}^{1}D_{2}$$

$$2\frac{1}{2} + 2\frac{1}{2}$$

- (ii) ${}^2F_{3/2} {}^2D_{1/2}$
- 4 Answer the following questions (any four)

5x4=20

2+3

5

5

5

.2+3

- (a) Explain the rotational spectrum of a diatomic molecule treating the molecule as a non-rigid rotator. In a microwave spectrum, the transition J=4 to J=5 in H^1Cl^{35} molecule occurs at 8303 m⁻¹. Regarding the molecule as rigid rotator, calculate the moment of inertia and internuclear distance. (Given, $h=6.63 \times 10^{-34} Js$, $C=3.8 \times 10^8 ms^{-1}$, 1 amu = 1.66 x $10^{-27} kg$).
- (b) A space probe was designed to see $C^{12}O^{16}$ in the atmosphere of Saturn by looking for lines in its rotational spectrum. If the bond length of $C^{12}O^{16}$ is 112.8 pm, at what wavenumber do the first three rotational transitions appear?
- (c) The force constant of the bond in $C^{12}O^{16}$ molecule is 1870 Nm⁻¹. Calculate the frequency of vibration of the molecule, energy level of lowest vibrational level and energy difference between the lowest and the first vibrational energy level of $C^{12}O^{16}$. (Given, 1 amu = 1.66 x 10^{-27} kg, 1 eV = 1.60 x 10^{-19} J)
- (d) A diatomic molecule HX (X is an unknown atom) has a vibrational force constant $k = 9.6800 \times 10^5 \text{ gs}^{-2}$. The vibrational frequency in wavenumber is 4143.3 cm⁻¹. Calculate the reduced mass of the molecule and also find the mass number of unknown atom. What atom is X?(Given, 1 amu = 1.66×10^{-27} kg).
- (e) Discuss why Stokes radiation is more intense than anti-Stokes radiation?. For exciting line of 4358 Å, a molecule shows a Raman line at 4567 Å. Find the positions of Stokes and anti-Stokes lines of this molecule when exciting line 4047 Å is used.

5	Answer the following questions (any four)	5x4=20
	(a) Describe the working of He-Ne Laser with the help of energy level scheme.	5
	(b) What is meant by population inversion? Show that population inversion is necessary condition for Laser action.	1+4
	(c) Discuss the various interaction of an atom with electromagnetic radiation.	5
	(d) Write a short note on main components of a Laser.	5
	(e) Show that the probabilities of stimulated absorption and stimulated emission are equal.	5
