2018 PHYSICS PAPER-304

NUCLEAR PHYSICS - II

Full Marks- 80 Time – 3 hours

The figures in the margin indicate full marks for the questions

1.	Answer the following: (any five) 3 >	5 = 15
(a)	Lowest order of electric multipole moments that may a	arise from
	non-spherical charge distribution is electric quadrupole	moment -
	Justify the statement.	3
(b)	Mention the advantages of scintillation detector over other	r
	detectors.	3
(c)	Write down the properties of ideal scintillation detector	3
(d)	y actisity viola	ation
	cannot be associated with the low-lying energy levels of	
	nucleus.	3
(d)	What do you mean by dead time of a particle detector? W	hy the
	concept of dead time is important in the context o	f particle
	detector?	2+1
(f)	What do you mean by quenching mechanism in a gas-fille	ed
	detector? Mention the characteristics of quenching gas.	2+1
2.	Answer the following: (any five) 5 >	5 = 25
(a)	Write down the success and failures of single particle she	ll model.
		5
	1	P.T.O.

(b) For an even-even nucleus, the 2 nd excited state of a rotational band		
of energy level is found to be at 93 KeV. Calculate the energies of 8 ⁺		
and 10 ⁺ energy state of the same band.		
(b) Discuss the properties and classification of quarks.		
(c) What do you mean by energy resolution? Why solid state detector		
has better energy resolution than that of gaseous detector? Why energy		
resolution increases with energy? 2+2+1		
(d) What are the different types of nuclear reactions? Describe with		
examples. 5		
(e) Define critical or grazing angle. If a C ¹³ of 80 MeV is hombarded		
on $^{207}_{82}Pb$ nucleus. Find out the possible value of grazing angle. 5		
3. Answer the following (any four) $10 \times 4 - 40$		
(a) Write down the mechanism by which electromagnetic radiations		
interact with matter. Discuss the working of a scintillation detector.		
614		
(b) What is CN catastrophe of magnetic moment? How the anomaly		
was resolved? what is senmidt line?		
Given: the experimental values of magnetic moment of C^{13} and N^{15}		
are $0.7 \mu_N$ and $-0.28 \mu_N$ respectively and also		
$\mu_p = 2.7925 \mu_N; \mu_n = -1.9128 \mu_N$		
(c) What is quark model? Obtain the quark composition of a composition of		
mesons, spin 1/2 and spin 3/2 baryons using the quark madel		
(d) Write two differences between direct and company to		
reaction. Describe the compound nucleus theory of most		
OIVE CADEIIIIEIII EVICIENCES IN CUINDON OF 1		
(e) Write short notes on: (any two)		
(i) Standard Model of particle Physics,		
(ii) Cerenkov detector,		
(iii) Surface-barrier detector		

(f) What do you mean by geometrical & intrinsic efficiency of a particle detector? Why the efficiency of G.M. counter is larger for β -particles than γ -rays? Why operating voltage of a GM counter is always chosen at the middle of GM plateau? What do you mean by avalanche? Why GM counter cannot identify the incoming radiation that fall on it?
