2015

PHYSICS

Paper: 104 (Old Course)

ELECTRODYNAMICS

Full Marks: 80

Time: 3 hours

The figures in the margin indicate full marks for the questions

Answer all:

 $1 \times 6 = 6$

- 1. If magnetic monopoles did exist, how many of Maxwell's equations would have to be changed?
 - (a) One (b) Two (c) Three (d) None
- 2. What does a changing electric field induce?
 - (a) Charges (b) Magnetic filed (c) Electrons
 - (d) None of them.
- 3. The electric field for a plane electromagnetic wave travelling

in the positive zdirection is represented by which one of the following:

(a)
$$\hat{k}_1 E_0 e^{i(kz - \omega t + \phi)}$$
 (b) $i_1 E_0 e^{i(kz - \omega t + \phi)}$

(b)
$$i_1E_0e^{i(kz-\omega t+\varphi)}$$

(c)
$$\hat{i}_1 E_0 e^{i(kz-\omega t+\varphi)}$$

(d)
$$\hat{k}_{1}E_{0}e^{i(kz-\omega t+\varphi)}$$

where $\boldsymbol{\hat{i}}_1$ and $\boldsymbol{\hat{k}}_1$ are the unit vectors along \boldsymbol{x} and \boldsymbol{z} directions.

- Transverse magnetic (TM) modes have -4.
 - magnetic field in the direction of propagation. (a)
 - no magnetic filed in the direction of propagation. **(b)**
 - electric field in the direction of propagation. (c)
 - both electric field and magnetic field in the direction of propagation.
- Which one of the following is not Maxwell's equation? 5.

(a)
$$\nabla .D = \rho$$
 (b) $\nabla x E = -\frac{\partial B}{\partial t}$ (c) $\nabla x H = J + \frac{dD}{dt}$

(d)
$$\nabla J = -\frac{d\rho}{dt}$$

- Which of the following matching is incorrect. 6.
 - (a) Amperes circuital law, $\nabla x H = J + \frac{dD}{dt}$

- (b) Displacement current density, $J = \frac{dD}{dt}$
- (c) Poisson equation, $\nabla^2 V = 0$
- (d) Continuity equation, $\nabla J = -\frac{d\rho}{dt}$

Answer all:

 $2 \times 6 = 12$

- State first uniqueness theorem and hence prove it. 7. 2
- 8. Explain why plasma is diamagnetic. 2
- Give the condition for Transverse Magnetic (TM) mode 9. in a waveguide. 2
- What are Greens first and second identity / theorem? 2
- 11. What is anomalous dispersion? 2
- What is $(E \times B)$ drift? 12. 2

Answer all:

 $5 \times 4 = 20$

On the basis of Maxwell's equation show that the 13. co-efficient of reflection R at the surface of glass of index of refraction n for e. m. waves at normal incidence is

$$R = (n-1)^2 / (n+1)^2$$

Show that under Lorentz gauge Maxwell's equations are equivalent to the inhomogeneous equations

$$\nabla^2 \Phi - \frac{1}{c^2} \frac{\partial^2 \Phi}{\partial t^2} = -\frac{\rho}{\epsilon_0}$$

$$\nabla^2 A - \frac{1}{c^2} \frac{\partial^2 A}{\partial t^2} = -\mu_0 J.$$

- 15. Explain the term waveguides. Categorize the modes of waveguides and hence give their conditions.5
- Show that the magnetic moment of a charged particle in magnetic field with a gradient parallel to its direction is a constant of motion.

Answer any two from the following: $9 \times 2 = 18$

- 17. Consider the TE waves in a rectangular waveguide with perfectly conducting walls and then deduce the expression for cutoff frequency of the waveguide.
- 18. Expalin Skin depth and hence give mathematical expression.

Show that electrons in plasma execute standing oscillations with a characteristic frequency of

$$(N_0 e^2 / m_e \epsilon_0)^{1/2}$$
 5

19. Explain Debye shielding and Debye length. Find an expression for Debye length. 2 + 2 + 5 = 9

(4) *P.T.O.*

4

Answer any two questions out of four: $12 \times 2 = 24$

- 20. An electromagnetic wave travelling in a dielectric medium is incident on another dielectric medium, the incident wave being polarized normal to the plane of incidence. Now obtain the Fresnel's equation. 3+9=12
- 21. (a) What is convective derivative? Express mathematically.

(b) Derive a dispersion relation for two stream instability and show that for sufficiently lower streaming, velocity waves are unstable.

3

- (c) What is the role of Landau-damping? 2
- 22. (a) Consider an electromagnetic waves propagating in z-directions, so that E and B vary only in the direction of z-axis. Show that both vectors E and B are perpendicular to each other.
 - (b) Show that the propagation vector k for electromagnetic waves in a conducting medium is complex. 5

___ × ___