2015

PHYSICS

Paper: PHY 301

ADVANCED QUANTUM MECHANICS

Full Marks: 80

Time: 3 hours

The figures in the margin indicate full marks for the questions

1	Angr	ver	the	$f \cap 1$	lowing

 $1 \times 5 = 5$

- (a) Dirac dalta function $\delta(\vec{r} \vec{r}')$ can be written as 1 (i) $\frac{1}{(2\pi)^3} \int e^{i\vec{p}. (\vec{r} - \vec{r}')} d^3p$ (ii) $\frac{1}{(2\pi)^3} \int e^{-i\vec{p}. (\vec{r} - \vec{r}')} d^3p$ (iii) $-\frac{1}{(2\pi)^3} \int e^{-i\vec{p}. (\vec{r} - \vec{r}')} d^3p$ (iv) $-\frac{1}{(2\pi)^3} \int e^{i\vec{p}. (\vec{r} - \vec{r}')} d^3p$
- (b) Klein-Gordon equation is applicable only for 1
 - (i) Bosons (ii) Fermions (iii) Weakly interacting particles (iv) All of the above
- (c) The partial wave analysis method is more appropriate for the low energy scattering phenomena.
 - (i) True (ii) False
- (d) In scattering problem, the Born approximation is applicable only for a weak potential.
 - (i) True (ii) False

	(e) Dirac equation provides						
	(i) Positive energy solution						
	(ii) Negative energy solution						
	(iii) Both the positive & negative energy solution						
	(iv) None of the above						
2.	Answer the following (any five) 3						
	(a)	Discuss the canonical quantization process	edure to quan-				
		tize a classical system.	3				
		Show that:					
	(b)	$\gamma^{\mu}\gamma^{\mu}=4$	3				
,	(c)	$\gamma_{\mu}A\gamma^{\mu} = -2A$	3				
	(d)	Prove that $(\vec{\sigma} \cdot \vec{A})(\vec{\sigma} \cdot \vec{B}) =$	(Ā.B) +				
		$i\vec{\sigma}.(\vec{A}\times\vec{B})$, where the symbols have the	ir usual mean-				
		ings.	3				
	(e)	Briefly discuss the Dirac hole theory.	3				
	(f)	Establish Dirac equation in presence o	f electromag-				
		netic field.	3				
3.	Answer the following (any three) $3 \times 5 = 15$						
	(a)	Show how one can go from an 1-D disc	rete system to				
		a continuous field system and derive the	e correspond-				
		ing field equation.	5				
	(b) $650 \text{MeV} \pi^0$ are scattered from a heavy and total						
		(2)	P.T.O.				

absorbing nucleus of radius 1.4 fm.

- (i) Estimate the total elastic and inelastic cross-sections.
- (ii) Calculate the scattering amplitude and check the validity of the optical theorem. 2+3
- (c) Using Dirac equation, obtain an expression for probability density and current density using the equation of continuity, $\frac{\partial p}{\partial t} + \nabla J = 0$
- (d) Calculate the differential cross-section in the first Born approximation for a Coulomb potential $V(r) = z_1 z_2 \frac{e^2}{r}$, where $z_1 e$ and $z_2 e$ are the charges of the projectile and target particle respectively.
- (e) Write short note on the schrödinger's Cat paradox.5
 Answer the following (any three) 3 × 15 = 45
 - (a) Quantize free electromagnetic field and arrive at the expressions for second quantized form of the field operator and the total energy operator.
 - (b) Why do we impose Coulomb (radiation) gauge in the above quantization? Why does one need to use transverse Kronecker delta in the ETCR of e.m.field in radiation gauge?
- 5. (a) Using partial wave analysis method prove the optical theorem:

(3)

P.T.O.

$$\sigma t = \frac{4\pi}{k} \text{Im} f(0)$$

where the symbols have their usual meanings.

10

- (b) Consider the elastic scattering of 100 MeV neutrons from a nucleus. The phase shifts measured in the experiment are $\delta_0 = 60^\circ$, $\delta_1 = 45^\circ$ and $\delta_2 = 30^\circ$ and all other phase shifts are negligible i.e. $\delta_1 = 0$ for $1 \ge 3$. Calculate the total scattering cross-section.
- 6. (a) Using Green's function method, derive the expression for differential scattering cross-section

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{1}{|16\pi^2|} \int e^{-i\vec{k}\cdot\vec{r}'} u(r')\psi (r')d^3r'|^2$$

where the symbols have their usual meanings. 10

- (b) Using first order Born approximation, compute the expression for differential scattering cross-section in case of an elastic collision. Take the potential to be spherically symmetric.
- 7. (a) What do you mean by Lorentz covariance? Show that the Dirac equation is invariant under Lorentz transformation.
 - (b) Establish the following relation

$$Tr(\gamma^{\mu}\gamma^{\nu}\gamma^{\alpha}\gamma^{\beta}) = 4 \left[g^{\mu\nu}g^{\alpha\beta} - g^{\mu\alpha}g^{\nu\beta} + g^{\mu\beta}g^{\nu\alpha} \right] \qquad \qquad 6$$

— × ——