
Chapter 6

Conharmonically Flat Space with

Dynamical Cosmological Term Λ in

Five Dimensional Kaluza-Klein

Space-Time

6.1 Introduction

Despite the numerous efforts made by several cosmological and astrophysical experts

about the universe’s future evolution in addition to their understanding of the present

and past state of the universe, we are unable to make a definitive determination regarding

the origin and evolution of the physical universe. Different cosmological observations

(Perlmutter et al. (1999); Riess et al. (1998); Riess et al. (2004)) have confirmed that

the universe is going through cosmic acceleration. It is believed that DE model plays a

vital role in accelerating expansion of the universe. The most suitable representative for

describing the DE model is the cosmological constant. Many prominent authors (Sahni

and Starobinsky (2000); Padmanabhan (2003); Peebles and Ratra (2003); Padmanabhan

(2008)) considered the variable cosmological constant as a time-varying parameter to

explain the nature of dark energy problem. Al-Rawaf and Taha (1996) ; Al-Rawaf

(1998) and Overduin and Cooperstock (1998) proposed a model of the universe with Λ

term of the form Λ = β ä
a

, where β is a arbitrary constant.
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Several researchers (Silveira and Waga (1994); Overduin (1999); Khadekar et al.

(2008a); Sharif and Khanum (2011); Tiwari and Singh (2015); Tiwari (2016)) consid-

ered the dynemical cosmological term Λ in different contexts to study the cosmological

model in general relativity.

In this chapter we discussed about the FRW type 5D Kaluza-Klein homogeneous

and isotropic cosmological models by considering dynamical cosmological term as

Λ = αH2 (where α is a constant and H = ȧ
a
) to find out the solutions which are realistic

with the observational facts.

6.2 The Metric and Field Equations:

We consider a homogeneous and isotropic FRW type 5D Kaluza-Klein space time is

given by

ds2 = dt2 − a2(t)

[
dr2

1− kr2
+ r2(dθ2 + sin 2θdϕ2) + (1− kr2)dψ2

]
, (6.1)

where a(t) is a cosmic scale factor and k = −1, 0,+1 is the curvature parameter for

open, flat and closed universe and the fifth coordinate ϕ is taken to be extended space

like coordinate respectively.

The Einstein’s field equation (with c = G = 1 ) may be written as

Rij −
1

2
gijR = 8πTij − Λgij, (6.2)

where Rij is the Ricci tensor, R is the Ricci scalar, gij is the metric tensor and Tij is

the energy momentum tensor of a perfect fluid given by

Tij = (ρ+ p)uiuj − pgij, (6.3)

The conharmonic curvature tensor for a relatives 5D space-time is

Ll
ijk = Rl

ijk −
1

3
(gijR

l
k − gikR

l
j + δlkRij − δljRik), (6.4)

For conharmonically flat space-time Ll
ijk = 0, we obtain
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3Rl
ijk = gijR

l
k − gikR

l
j + δlkRij − δljRik. (6.5)

Contracting above equation with j = l and taking summation over j, we obtain

Rik = −1

5
Rgik. (6.6)

For conharmonically flat space-time, using the above equation the Einstein’s field

equation (6.2) reduce to

Rij =
16

7
πTij −

2

7
Λgij. (6.7)

In co-moving coordinates system, for the flat (k = 0) metric (6.4), the energy

momentum tensor (6.3) and Einstein’s field equation (6.7) reduces to

8πρ− Λ = −14(Ḣ +H2) (6.8)

8πp+ Λ =
7

2
(Ḣ + 4H2) (6.9)

where H = ȧ
a

is the Hubble’s parameter and over head dot denotes the derivatives

with respect to cosmic time t.

The EoS parameter (ω) which is considered as an important quantity in describing

the dynamic of the universe in the ratio of the pressure (p) and the energy density (ρ)

are given by

p = ωρ (6.10)

Eliminating ρ from equations (6.8)− (6.10) we obtain

7 + 28ω

2

ä

a
+

21

2

ȧ2

a2
= (1 + ω)Λ (6.11)

which is the dynamical equation related to the scale factor a for the dynamical

cosmological term Λ .
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6.3 Solution of the Field Equations

In eqn. (6.11), involving three unknown parameters a, ω and Λ, so in order to obtain

deterministic solution of the above equations we need one more physical equations

involving these unknowns.

Here, we may consider the following value of Λ term (Silveira and Waga (1994);

Overduin (1999); Khadekar et al. (2008a); Sharif and Khanum (2011); Tiwari and Singh

(2015); Tiwari (2016))

Λ = α
ȧ2

a2
(6.12)

where α is an arbitrary constant.

Using eqn. (6.12) in eqn. (6.11) we obtain the general solution as

ä

a
+

21− 2(1 + ω)α

7 + 28ω

ȧ2

a2
= 0 (6.13)

Integrating (6.13) we obtain

a(t) = [
2(1 + ω)(14− α)

7(1 + 4ω)
ct]

7(1+4ω)
2(1+ω)(14−α) (6.14)

Using eqn. (6.14) the model universe (6.1) becomes

ds2 = dt2−[
2(1 + ω)(14− α)

7(1 + 4ω)
ct]

7(1+4ω)
2(1+ω)(14−α)

[
dr2

1− kr2
+ r2(dθ2 + sin 2θdϕ2) + (1− kr2)dψ2

]
,

(6.15)

The eqn. (6.15) represents 5D Kaluza-Klein cosmological model with the dynamical

cosmological term Λ.

6.4 Physical Parameters of the Model and its Behaviour

For the cosmological model (6.15), the spatial volume (V), Hubble’s parameter (H),

expansion scalar (θ), deceleration parameter (q), energy density (ρ), pressure (p),

cosmological constant (Λ) are obtained as follows:
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V = [
2(1 + ω)(14− α)

7(1 + 4ω)
ct]

14(1+4ω)
(1+ω)(14−α) (6.16)

H =
7(1 + 4ω)

2(1 + ω)(14− α)t
(6.17)

θ =
14(1 + 4ω)

(1 + ω)(14− α)t
(6.18)

q = −1 +
2(1 + ω)(14− α)

7(1 + 4ω)
(6.19)

ρ =
147(1 + 4ω)

32π(1 + ω)2(14− α)t2
(6.20)

P =
147ω(1 + 4ω)

32π(1 + ω)2(14− α)t2
(6.21)

Λ =
49(1 + 4ω)2

4(1 + ω)2(14− α)2t2
(6.22)

Now we discuss scenarios for three types of physical acceptable universes (ω =

0, 1, 1
3
):

6.4.1 Matter Dominated Solution (Cosmology for ω = 0)

For ω = 0 in this case we obtained the physical quantities as follows:

a(t) = [
2(14− α)

7
ct]

7
2(14−α) (6.23)

V = [
2(14− α)

7
ct]

14
(14−α) (6.24)

H =
7

2(14− α)t
(6.25)

θ =
14

(14− α)t
(6.26)
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q = −1 +
2(14− α)

7
(6.27)

ρ =
147

32π(14− α)t2
(6.28)

P = 0 (6.29)

Λ =
49

4(14− α)2t2
(6.30)
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Figure 6.1: The plot of a, V,H, θ, ρ,Λ versus cosmic time t, for ω = 0, α1 =
α2 = 1.

6.4.2 Zeldovich Fluid Distribution (Cosmology for ω = 1)

For ω = 1 in this case the expressions for physical quantities are obtained as follows:

a(t) = [
4(14− α)

35
ct]

35
4(14−α) (6.31)

V = [
4(14− α)

35
ct]

35
(14−α) (6.32)
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H =
35

4(14− α)t
(6.33)

θ =
35

(14− α)t
(6.34)

q = −1 +
4(14− α)

35
(6.35)

ρ = p =
735

128π(14− α)t2
(6.36)

Λ =
1225

16(14− α)2t2
(6.37)
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Figure 6.2: The plot of a, V,H, θ, ρ,Λ versus cosmic time t, for ω = 1, α1 =
α2 = 1.

6.4.3 Radiation Dominated Solution (Cosmology for ω = 1
3)

For ω = 1
3

the physical quantities are obtained as follows:

a(t) = [
8(14− α)

49
ct]

49
8(14−α) (6.38)
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V = [
8(14− α)

49
ct]

49
2(14−α) (6.39)

H =
49

8(14− α)t
(6.40)

θ =
49

2(14− α)t
(6.41)

q = −1 +
8(14− α)

49
(6.42)

ρ =
3087

512π(14− α)t2
(6.43)

p =
1029

512π(14− α)t2
(6.44)

Λ =
2401

64(14− α)2t2
(6.45)
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Figure 6.3: The plot of a, V,H, θ, ρ,Λ versus cosmic time t, for ω = 1
3
, α1 =

α2 = 1.

For the derived model, the statefinder parameter (r, s) can be written as
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r = 1− 6(1 + ω)(14− α)

7(1 + 4ω)
+

8(1 + ω)2(14− α)2

49(1 + 4ω)2
(6.46)

s =
2(1 + ω)(14− α)[35− 28ω − 4α(1 + ω)]

21(1 + 4ω)[4(1 + ω)(14− α)− 21(1 + 4ω)]
(6.47)

From the above eqns. (6.46) and (6.47), we observed that for α = 14, the Statefinder

parameter (r, s) = (1, 0). Hence the derived model approached to ΛCDM model, which

is good agreement with present day’s observations (Ahmed and Pradhan (2014); Tiwari

and Singh (2015); Goyal et al. (2019)).

Eqns. (6.23)− (6.45) represents the cosmological parameters a, V,H, θ, q, p, ρ,Λ

for the model (6.15). Figs. 6.1, 6.2 and 6.3 shows that the variation of parameters

(a, V,H, θ, ρ,Λ) with respect to cosmic time t for all three types of physical acceptable

models of the universes, ω = 0 ( matter dominated universe), ω = 1 ( Zeldovich

universe), ω = 1
3

( radiation dominated universe) respectively.

From these figures we observed that the cosmic scale factor a and the spatial volume

V both are increasing function of cosmic time t and tends to zero as t → 0, which

shows that the present model universe has a initial singularity (MacCallum (1971)).

The Hubble’s parameter H and expansion scalar θ both are decreasing functions of

cosmic time t. As t→ ∞ the Hubble’s parameter and expansion scalar becomes zero,

which totally agrees with the prevailing theories. Also we observed that dH
dt

is negative

which indicate that the universe is expanding with an accelerated rate.

The variation of energy density ρ and cosmological constant Λ with respect to cos-

mic time t are depicted in figs. 6.1, 6.2 and 6.3 ( for three different value of ω = 0, 1, 1
3

). From these figures, we observed that ρ and Λ both are positive decreasing function

of cosmic time t. It is seen that the energy density ρ and cosmological constant Λ are

always remains positive ( ρ,Λ > 0 for all α < 14 ). For positive values of ρ and Λ, we

have known that the physical universe is expanding with an accelerated rate. Initially

when t→ 0 the energy density ρ→ ∞, which has a initial singularity.
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From eqn. (6.19), we observed that the behavior of deceleration parameter q < 0 (

for α > 21
2(1+ω)

), which indicates that the model universe is accelerating at present era,

which agrees with present day’s observational data (Riess et al. (1998); Garnavich et al.

(1998); Schmidt et al. (1998); Perlmutter et al. (1999)).

.


