
Chapter 2

Five Dimensional Kaluza-Klein Dark

Energy Cosmological Model under

Two-Fluid Scenario with Variable

Deceleration Parameter

2.1 Introduction

Many cosmological observations, such as the Type Ia Supernovae experiment (SNe.Ia)

have suggested that DE is the reason for the accelerating expansion of the observable

universe. There are many theoretical models of dark energy’s available today. The best

explanation model for DE is the ΛCDM model. According to cosmological observations

and analysis, DE accounts for roughly 68.3%, dark matter accounts for approximately

26.7%, and baryonic matter accounts for approximately 5% of the total energy of the

universe, with negligible radiation.

The evolution of the DE parameter in the two-fluid scenario has been studied

by several eminent authors. The cosmology of viscous dark tachyons in a non-flat

FRW universe has been investigated by Setare et al. (2009). Thermodynamics of DE
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interaction between dark matter and radiation are studied by Jamil et al. (2010). The

authors Amirhashchi et al. (2011a,b) have studied the development of the DE parameter

in an isotropic and spatially homogenous FRW space-time filled with barotropic fluid

and DE by taking a time dependent deceleration parameter. The DE models in the

FRW universe with a constant deceleration parameter has been investigated by Pradhan

et al. (2011). The interacting and non-interacting two-fluid scenario for DE models in

anisotropic Bianchi type-I space-time has been studied by Singh and Chaubey (2012).

Saha et al. (2012) have investigated two-fluid scenario for DE models in the FRW

universe. DE in the scalar tensor theory of gravity is described as a two-fluid scenario

by Reddy and Kumar (2013). Two-fluid cosmological models in a 5D spherically

symmetric space-time are investigated by Samanta and Debata (2013). Pradhan (2014)

have investigated FRW DE models under two-fluid scenario from decelerating to

accelerating phase of expansion of the universe. In a spatially homogenous and isotropic

FRW universe with a time-dependent q, Amirhashchi et al. (2014) explored two-fluid

atmosphere for DE models. Rao et al. (2016) have studied Axially Symmetric DE

cosmological models under two fluid scenario in Brans-Dicke theory of gravitation.

Interacting and non-interacting Bianchi Type-II, VIII, and IX DE cosmological models

under two-fluid scenario of Brans-Dicke theory are studied by Rao and Sireesha (2017).

Tripathy et al. (2017) investigated two fluid anisotropic Bianchi type-V DE models

in a scale invariant theory. Tiwari et al. (2017) investigated two-fluid scenario DE

cosmological model in FRW universe. In Bianchi type-III space time filled with a

barotropic fluid and DE, Tiwari et al. (2018) investigated into the EoS parameter for

DE by considering a variable deceleration parameter. The Bianchi type-I cosmological

model with barotropic and DE type fluids was studied by Goswami et al. (2020). The

stability of DE cosmological models in an anisotropic Bianchi type-V space time was

investigated by Mishra et al. (2021). Kumar et al. (2022) have investigated on two-fluid

cosmological models that include matter and a radiating source in the context of the

Saez-Ballester scalar-tensor theory of gravitation. The Bianchi type-I cosmological

model under two fluids scenario in scale covariant theory of gravitation has been studied

by Hatkar et al. (2022). In Saez-Ballester theory of gravitation, Trivedi and Bhabor

(2022) studied the characteristics of the five-dimensional Bianchi type-I cosmic universe
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filled with barotropic fluid and DE.

Inspired by the above mentioned recent efforts of many authors, we have explored

the evolution of the DE parameter in a 5D Kaluza-Klein space-time with barotropic

fluid and DE. We have discussed the behaviors of the models in presence of two fluid

scenario. We also obtained the value of the statefinder parameter in the proposed model.

2.2 Metric and Field Equations

A spatially homogeneous and anisotropic 5D Kaluza-Klein space time has been consid-

ered and it is as follows:

ds2 = dt2 − A2(dx2 + dy2 + dz2)−B2dψ2 (2.1)

where A and B are functions of cosmic time t only and the fifth coordinate ψ is

taken to be extended space like coordinate.

Einstein’s field equation (with 8πG = 1 and c = 1) is given by

Rij −
1

2
Rgij = −Tij (2.2)

where Rij is the Ricci tensor, R is the Ricci scalar, gij is the metric tensor and Tij is

the two fluid energy-momentum tensor consisting of barotropic fluid and dark energy.

The energy momentum tensor for two fluid is given by

Tij = Tm
ij + TD

ij (2.3)

where

Tm
ij = (ρm + pm)]µiµj − pmgij (2.4)

TD
ij = (ρD + pD)µiµj − pDgij (2.5)

here ρm and pm are the energy density and pressure of the perfect fluid and ρD and pD

are the energy density and pressure of the dark energy component.
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The EoS parameter (ω) which is considered as an important quantity in describing

the dynamics of the universe, is the ratio of the pressure (p) and the energy density (ρ)

and is given by

pm = ωmρm (2.6)

and

pD = ωDρD (2.7)

The Einstein field eqn. (2.2) with energy momentums eqns. (2.4) and (2.5) for the

metric (2.1) it follows that

2
Ä

A
+
B̈

B
+ 2

ȦḂ

AB
+
Ȧ2

A2
= −(pm + pD) (2.8)

3
Ä

A
+ 3

Ȧ2

A2
= −(pm + pD) (2.9)

3
Ȧ2

A2
+ 3

ȦḂ

AB
= ρm + ρD (2.10)

an over dot indicate a derivatives with respect to cosmic time t.

The energy conservation equation T ij
;j = 0, which yields

ρ̇+ 4H(ρ+ p) = 0 (2.11)

where p = pm + pD and ρ = ρm + ρD.

2.3 Solution of the Field Equations

In order to solve the system of equations we consider the deceleration parameter (q) as

a linear function of Hubble’s parameter which is as follows

q = −aä
ȧ2

= βH + α (2.12)

Here α and β arbitrary constants.



2.3. Solution of the Field Equations 33

Taking α = −1 in eqn. (2.12)

q = −aä
ȧ2

= −1 + βH (2.13)

which yields the following differential equation

aä

ȧ2
+ β

ȧ

a
− 1 = 0 (2.14)

which on integration gives

a(t) = e
1
β

√
2βt+c (2.15)

where c is an integrating constant.

Subtracting eqn. (2.8) from eqn. (2.9) we get,

d

dt
(
Ȧ

A
− Ḃ

B
) + (

Ȧ

A
− Ḃ

B
)
V̇

V
= 0

which on integrating gives
Ȧ

A
− Ḃ

B
=
λ

V
(2.16)

where λ is an integration constant.

Using eqn. (2.15) in eqn. (2.16) and then integrating we get the scale factors are

A(t) = e
1
β

√
2βt+cexp[−λβ

64
e

−4
β

√
2βt+c(

4

β

√
2βt+ c+ 1)] (2.17)

and

B(t) = e
1
β

√
2βt+cexp[

3λβ

64
e

−4
β

√
2βt+c(

4

β

√
2βt+ c+ 1)] (2.18)

Therefore the metric (2.1) reduces to

ds2 = dt2 − e
1
β

√
2βt+cexp[−λβ

64
e

−4
β

√
2βt+c(

4

β

√
2βt+ c+ 1)](dx2 + dy2 + dz2)

− e
1
β

√
2βt+cexp[

3λβ

64
e

−4
β

√
2βt+c(

4

β

√
2βt+ c+ 1)]dϕ2 (2.19)

The physical parameters of the model are given by
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V = e
4
β

√
2βt+ c (2.20)

H =
1√

2βt+ c
(2.21)

θ = 4H =
4√

2βt+ c
(2.22)

∆ =
3λ2

16
(2βt+ c)e

−8
β

√
2βt+c (2.23)

σ2 =
3λ2

32
e

−8
β

√
2βt+c (2.24)

q = −1 +
β√

2βt+ c
(2.25)

Here, we consider two cases:

Case-I: when the two fluids do not-interact with each other and

Case-II: when the two fluids interact each other.

2.4 Case-I: Non-Interacting Two Fluid Model

First we consider the two fluids do not interact, the conservation equation for the dark

and barotropic fluid separately as

ρ̇m + 4H(pm + ρm) = 0 (2.26)

ρ̇D + 4H(pD + ρD) = 0 (2.27)

Integrating (2.26) we get,

ρm = ρ0e
−4(1+ωm)

β

√
2βt+c (2.28)

where ρ0 is an integrating constant.
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Using (2.17), (2.18) and (2.28) in eqns. (2.9) and (2.10) we obtain

PD = −3

[
2 + λ2

8
(2βt+ c)e

−8
β

√
2βt+c − β(2βt+ c)

−1
2

(2βt+ c)

]
− ωmρ0e

−4(1+ωm)
β

√
2βt+c

(2.29)

ρD = 3

[
2− λ2

8
(2βt+ c)e

−8
β

√
2βt+c

(2βt+ c)

]
− ρ0e

−4(1+ωm)
β

√
2βt+c (2.30)

Using eqns. (2.29) and (2.30) we can find the expression for EoS parameter of dark

energy as

ωD = −

[
6 + 3λ2

8
(2βt+ c)e

−8
β

√
2βt+c − 3β(2βt+ c)

−1
2 + ωmρ0(2βt+ c)e

−4(1+ωm)
β

√
2βt+c

6− 3λ2

8
(2βt+ c)e

−8
β

√
2βt+c − ρ0(2βt+ c)e

−4(1+ωm)
β

√
2βt+c

]
(2.31)

The expressions of matter-energy-density parameter (Ωm) and dark energy density

parameter (ΩD) are given by

Ωm =
ρm
6H2

=
ρ0e

−4(1+ωm)
β

√
2βt+c

6(2βt+ c)−1
(2.32)

and

ΩD =
ρD
6H2

= 1− λ2

16
(2βt+ c)e

−8
β

√
2βt+c − 1

6
ρ0(2βt+ c)e

−4(1+ωm)
β

√
2βt+c (2.33)

The total energy density (Ω) is given by

Ω = Ωm + ΩD = 1− λ2

16
(2βt+ c)e

−8
β

√
2βt+c (2.34)

2.5 Case-II: Interacting Two Fluid Model

In this section, we can write the energy conservation equation for the dark and barotropic

fluid as

ρ̇m + 4(1 + ωm)ρmH = Q (2.35)
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ρ̇D + 4(1 + ωD)ρDH = −Q (2.36)

where the quantity Q represents the interaction between the componants of matter

and DE. We considerd Q > 0, this ensures that the energy is being transferred from

DE to the matter component. Following Guo et al. (2007), Amendola et al. (2007), we

consider

Q = 4Hkρm (2.37)

where k is coupling constant.

Using (2.37) in eqn. (2.35) we get

ρm = ρ0e
−4(1+ωm−k)

β

√
2βt+c (2.38)

Now the value of PD and ρD are

PD = −3

[
2 + λ2

8
(2βt+ c)e

−8
β

√
2βt+c − β(2βt+ c)

−1
2

(2βt+ c)

]
− ωmρ0e

−4(1+ωm−k)
β

√
2βt+c

(2.39)

ρD = 3

[
2− λ2

8
(2βt+ c)e

−8
β

√
2βt+c

(2βt+ c)

]
− ρ0e

−4(1+ωm−k)
β

√
2βt+c (2.40)

Also the EoS parameter (ωD) is obtained as

ωD = −

[
6 + 3λ2

8
(2βt+ c)e

−8
β

√
2βt+c − 3β(2βt+ c)

−1
2 + ωmρ0(2βt+ c)e

−4(1+ωm−k)
β

√
2βt+c

6− 3λ2

8
(2βt+ c)e

−8
β

√
2βt+c − ρ0(2βt+ c)e

−4(1+ωm−k)
β

√
2βt+c

]
(2.41)

The expression of matter energy density-parameter (Ωm) and dark energy density

parameter (ΩD) are given as

Ωm =
ρm
6H2

=
ρ0e

−4(1+ωm−k)
β

√
2βt+c1

6(2βt+ c1)−1
(2.42)

and
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ΩD =
ρD
6H2

= 1− λ2

16
(2βt+ c)e

−8
β

√
2βt+c − 1

6
ρ0(2βt+ c)e

−4(1+ωm−k)
β

√
2βt+c (2.43)

The total energy density (Ω) is given by

Ω = Ωm + ΩD = 1− λ2

16
(2βt+ c)e

−8
β

√
2βt+c (2.44)

For the proposed model, statefinder parameter (r, s) are obtained as

r = 1− 3β√
2βt+ c

+
3β2

2βt+ c
(2.45)

and

s =
−2β

√
2βt+ c+ 2β2

2β
√
2βt+ c− 3(2βt+ c)

(2.46)

From the above result it is observed that as t→ ∞, (r, s) → (1, 0) which gives that

the model tends to the ΛCDM model as in recent observation ( Ahmed and Pradhan

(2014)).

2.6 Physical Interpretation of the Solutions

Here, we discuss the outcomes of the above mentioned theoretical calculations. We have

plotted the various figures using these calculations for suitable values of the constants

mentioned in the corresponding captions.

From the expression (2.20), we observed that the behavior of spatial volume V is

zero at initial epoch t = 0 and it is increasing expontially with respect to cosmic time

t which shows that the model universe is expanding with the evolution of time. At

time t→ ∞, the spatial volume V becomes infinite. Nature of the variations of spatial

volume V versus cosmic time t is plotted in fig. 2.1 (a).

From eqn. (2.25) we observed that the universe is in an accelerating phase when

q < 0 for t > β2−c
2β

. Also, current observations of Type Ia Supernovae (Riess et al.

(1998); Garnavich et al. (1998); Schmidt et al. (1998); Perlmutter et al. (1999)) exposed

that the present universe is accelerating and the value of deceleration parameter q can be
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Figure 2.1: (a) The plot of V versus cosmic time t, (b) The plot of deceleration parameter
q versus cosmic time t, for β = 1 and c = 1.
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Figure 2.2: (a) The plot of H versus cosmic time t, (b) The plot of expansion scalar θ
versus cosmic time t, for β = 1 and c = 1

found nearby in the range −1 < q < 0. Variations of q versus cosmic time t is plotted

in fig. 2.1 (b). From this figure it is observed that q < 0, i.e., at present time we obtain

the accelerating phase of the universe. As t→ ∞, the models asymptotically approach

the value q = −1, corresponding to the ΛCDM model.

From eqns. (2.21) and (2.22) shows that both Hubble’s parameter H and expansion

scalar θ are always positive and decreasing function of cosmic time t and tends to zero

as t→ ∞. Variations of Hubble’s parameter H and expansion scalar θ versus cosmic

time t are depicted in fig. 2.2 (a) and fig. 2.2 (b), which are in agrees with the prevailing

theories.

From figs. 2.3 (a) and 2.3 (b) corresponding to the eqns. (2.23) and (2.34), it is
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Figure 2.3: (a) The plot of ∆ versus cosmic time t, (b) The plot of shear scalar σ2 versus
cosmic time t, for β = 1, λ = 1 and c = 1.
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Figure 2.4: (a) The plot of pD versus cosmic time t for non- interactive case, (b) The
plot of pressure pD versus cosmic time t for interactive case, for β = 1,c = 1,λ = 1,
ρ0 = 1 and ωm = 0.5 .

seen that the anisotropic parameter ∆ and shear scalar σ2 tends to zero as cosmic time

t→ ∞.

Figs. 2.4 (a) and 2.4 (b) shows that the variation of pressure pD versus cosmic

time t for both the cases. We observed that at the time of evolution of the universe

(t = 0), the pressure pD is negative and gradually increases, but remains negative.

Nature of the variation of energy density ρD versus cosmic time t for both the cases

are depicted in figs. 2.5 (a) and 2.5 (b). It is observed that the energy density ρD is

a positive decreasing function of cosmic time t and becomes zero as t → ∞. This

negative pressure and positive energy density shows that the model under consideration

represents a dark energy universe which shows accelerating expansion, as established
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Figure 2.5: (a) The plot of ρD versus cosmic time t for non-interactive case, (b) The plot
of energy density ρD versus cosmic time t, for interactive case, for β = 1,c = 1,λ = 1,
ρ0 = 1 , k = .02 and ωm = 0.5.
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Figure 2.6: (a) The plot of ωD versus cosmic time t for non-interactive case, (b) The
plot of ωD versus cosmic time t for interactive case, for β = 1,c = 1,λ = 1, ρ0 = 1 ,
k = .02 and ωm = 0.5

by current observations ( Perlmutter et al. (1999); Riess et al. (2004)).

From figs. 2.6 (a) and 2.6 (b) corresponding to the eqns. (2.31) and (2.41), we

see that during the evolution of the universe for both non-interacting and interacting

cases the behavior of EoS parameter ωD is a decreasing function of cosmic time t. It

is observed that, for both the cases it is same within the plotted range and varying

in the quintessence model (−1 < ωD < −1
3
) of the universe. Thus, the derived

model is consistent with well established theoretical results as well as with the current

observational data ( Knop et al. (2003); Tegmark et al. (2004)).

From eqns. (2.34) and (2.44) we observed that in non-interacting case the total
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energy density parameter has the same properties as in interacting case. We observed

that, for both interacting and non-interacting cases Ω approaches to one as t→ ∞.
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Figure 2.7: (a) The plot of energy condition versus cosmic time t for non-interactive
case, (b) The plot of energy condition versus cosmic time t for interactive case, for
β = 1,c = 1,λ = 1, ρ0 = 1 , k = .02 and ωm = 0.5 .

Finally, in figs. 2.7 (a) and 2.7 (b) we have plottted the graphs of energy conditions

such as weak energy condition (WEC), null energy condition (NEC), dominant energy

condition (DEC) and strong energy condition (SEC) for both non-interacting and

interacting cases . We observed that WEC ( ρD ≥ 0 and ρD + PD ≥ 0), NEC (

ρD + PD ≥ 0) and DEC (ρD − PD ≥ 0) are satisfied for both the cases but the SEC

(ρD + 3PD ≤ 0 ) gets violated, which indicates that the model proceed to accelerating

expansion of the universe ( Barcelo and Visser (2002); Riess et al. (2004)).


