
Chapter 3

Anisotropic Cloud String Cosmological

Model with Five Dimensional

Kaluza-Klein Space-Time

3.1 Introduction

Now a days string cosmology has recently received a lots of attention, due to its

crucial contribution to the investigation of the origin and evolution of the physical

universe prior to the creation of particles. Cosmologists are interested in the field of

string cosmology to study the mysterious phenomena that have yet to be observed and

investigate the unseen information of physical universe. For this reason, cosmologists

are extremely interested to understand the past, present, and future evolution of the

universe. However, as of right now, we don’t have enough solid data to draw certain

conclusions on its origin and evolution. So, further inquiry is required to discover

the enigmatic occurrences of the entire universe. Stachel (1980) and Letelier (1983)

initiated the study of strings within the framework of general relativity, since the string

perfectly captures the early stages of the formation of the universe. It is believed

that strings cause density perturbations that result in the formation of massive scale
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structures in the universe ( Zel’dovich et al. (1974); Zel’dovich (1980)), which has

attracted the attention of many eminent authors working in the field of cosmic strings

within the framework of general relativity ( Kibble (1976); Kibble (1983)).

General relativity’s paradigm has been used to explore Kaluza-Klein cosmic solu-

tions for quark matter linked with domain barriers and string clouds in higher dimensions

by Yilmaz (2006) and Adhav et al. (2008). Reddy et al. (2007) and Reddy and Naidu

(2007) investigated several theories of gravitation for the string cosmological model in

higher-dimensional space time. In the setting of 5D Kaluza-Klein space-time, Khadekar

et al. (2008b) examined string dust cosmological models with particles attached to them

by taking into account of three different kinds of variable Λ. In higher dimensional

space-time, Khadekar et al. (2007) investigated a string cosmology model with bulk

viscosity. Nimkar (2017) discussed how the electromagnetic field affects with the string

cosmological model in general relativity. The Kaluza-Klein string cosmological model

has been discussed by Pawar et al. (2018) within the context of the f(R, T) theory of

gravity. Higher dimensional Bianchi type-I cosmological model were investigated by

Krori et al. (1994). They found evidence that string and matter coexisted through-

out the universe’s development. Scale covariant theory of gravity has been used by

Venkateswarlu and Pavankuma (2005) to study a string cosmological model in higher

dimensional space-time. Rahaman et al. (2003a) attained the precise solutions of the

field equations for the space-time with high dimensions in the Lyra manifold structure

where the source of the gravitational field is a heavy string. By assuming that the

product of the energy density and tension density is zero, Kandalkar et al. (2012) con-

structed Bianchi type-III string cosmological models with magnetic fields in the context

of general relativity and obtained exact solution of the field equations. In the general

theory of relativity, Mohanty and Samanta (2009) studied a 5D axially symmetric string

cosmological model in the presence of bulk viscous fluid. Samanta and Debata (2011)

developed a Bianchi type-I 5D string cosmological model in the Lyra manifold. Some

of the distinguished authors who investigated various string cosmological models in

higher-dimensional space time within the contexts of general relativity are Choudhury

(2017); Tripathi et al. (2017); Dubey et al. (2018); Tiwari et al. (2019); Ram and Verma

(2019); Mollah et al. (2019); SINGH and BARO (2020); Mollah and Singh (2021) and
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Baro et al. (2021).

In this chapter, we have investigated 5D Kaluza-Klein string cosmological models

in presence of variable deceleration parameter. This chapter is organised as follows:

Section 3.2 is devoted to the metric and Einstein’s field equations. We discussed the

solution and theoretical calculations of the field equations in Section 3.3. In section 3.4,

the physical interpretation and its behaviour has been provided.

3.2 Metric and Field Equations

A spatially homogeneous and anisotropic 5D Kaluza-Klein space time has been consid-

ered and it is as follows

ds2 = dt2 − A2(dx2 + dy2 + dz2)−B2dψ2 (3.1)

where A and B are functions of cosmic time t only and the fifth coordinate ψ is

taken to be extended space like coordinate.

The Einstein’s field equation is given by

Rij −
1

2
Rgij = −Tij (3.2)

where Rij is the Ricci tensor R is the Ricci scalar gij is the metric tensor and Tij is

the energy-momentum tensor for a cloud string respectively.

Thus the energy-momentum tensor for a cloud string is given by

Tij = ρνiνj − λxix
j (3.3)

where νi and xi satisfy the conditions

νiνi = −xixi = −1, νixi = 0 (3.4)

Here ρ is the rest energy density for a cloud of strings with particles attached to them.

ρ = ρp + λ, ρp being the rest energy density of particles attached to the strings and λ

the tension density of the strings. Here p and ρ are a function of cosmic time t only. xi
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is a unit space-like vector instead of the direction of strings so that x2 = x3 = x4 = 0

and x1 ̸= 0.

The energy-momentum tensor Tij in co-moving coordinates for could string is given

by

T 0
0 = ρ, T 1

1 = λ, T 2
2 = T 3

3 = T 4
4 = 0 (3.5)

The field eqn. (3.2) for the line-element (3.1) with the help of (3.3) -(3.5) can be

written explicitly as

3
Ȧ2

A2
+ 3

ȦḂ

AB
= ρ (3.6)

2
Ä

A
+
B̈

B
+ 2

ȦḂ

AB
+
Ȧ2

A2
= λ (3.7)

2
Ä

A
+
B̈

B
+ 2

ȦḂ

AB
+
Ȧ2

A2
= 0 (3.8)

3
Ä

A
+ 3

Ȧ2

A2
= 0 (3.9)

An over dot indicates a derivative with respect to cosmic time t.

The spatial volume for the model (3.1) is given by

V = a4 = A3B (3.10)

3.3 Solution of the Field Equations

To solve the system of equations we consider deceleration parameter (q) as a linear

function of Hubble’s parameter (Tiwari et al. (2015); Tiwari et al. (2018); Sharma et al.

(2019)).

q = −aä
ȧ2

= βH + α (3.11)

Here α and β are arbitrary constants.

For α = −1 in eqn. (3.11)
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q = −aä
ȧ2

= −1 + βH

which yields the following differential equation

aä

ȧ2
+ β

ȧ

a
− 1 = 0 (3.12)

After integrating eqn. (3.12) we get

a(t) = e
1
β

√
2βt+c (3.13)

where c is an integrating constant.

Collins et al. (1980) have explored that for a spatially homogeneous metric, a large

class of solutions that can satisfy the condition σ
θ

is constant, where θ is the expansion

scalar in the model. So we assume the shear scalar σ is proportional to the expansion

scalar θ. This gives the relation between scale factor A and B as,

A = Bn (3.14)

where n is constant and n ̸= 1 .

From eqns. (3.10) , (3.13) and (3.14), the metric component are

A(t) = e
4n

β(3n+1)

√
2βt+c (3.15)

and

B(t) = e
4

β(3n+1)

√
2βt+c (3.16)

Therefore the metric (3.1) reduces to

ds2 = dt2 − e
4n

β(3n+1)

√
2βt+c(dx2 + dy2 + dz2)− e

4
β(3n+1)

√
2βt+cdϕ2 (3.17)

The eqn. (3.17) represents 5D Kaluza-Klein cosmological model with variable

deceleration parameter.
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3.4 Physical Parameters of the Model and its Behaviour

From the cosmological model (3.17), the directional Hubble’s parameters Hx, Hy, Hz

and Hϕ, the physical quantities such as Hubble’s parameter H , spatial volume V ,

anisotropy parameter ∆, expansion scalar θ, shear scalar σ2, energy density ρ, particles

density ρp and tension density of the string λ are obtained as follows

The directional Hubble’s parameters Hx, Hy, Hz and Hϕ are

Hx = Hy = Hz =
4n

(3n+ 1)
√
2βt+ c

and

Hϕ =
4

(3n+ 1)
√
2βt+ c

For Kaluza-Klein space-time, the Hubble’s parameter(H) is given by

H =
1√

2βt+ c
(3.18)

The spatial volume(V ) is given by

V = e
4
β

√
2βt+c (3.19)

The expansion of anisotropic parameter (∆) is given by

∆ =
3(n− 1)2

(3n+ 1)2
= constant (̸= 0 where n ̸= 1) (3.20)

The expansion scalar (θ) is given by

θ =
4√

2βt+ c
(3.21)

The shear scalar (σ2) is given by

σ2 =
6(n− 1)2

(3n+ 1)2(2βt+ c)
(3.22)

From eqns. (3.21) and (3.22) we get

lim
t→∞

σ2

θ2
=

3(n− 1)2

8(3n+ 1)2
= constant (̸= 0 where n ̸= 1) (3.23)
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The energy density ρ is given by

ρ =
48n(n+ 1)

(3n+ 1)2(2βt+ c)
(3.24)

The tension density λ for the string is given by

λ =
16(3n2 + 2n+ 1)

(3n+ 1)2(2βt+ c)
− 4β(2n+ 1)

(3n+ 1)(2βt+ c)
3
2

(3.25)

The particle density ρp attached to the string is given by

ρp =
16(n− 1)

(3n+ 1)2(2βt+ c)
+

4β(2n+ 1)

(3n+ 1)(2βt+ c)
3
2

(3.26)

The deceleration parameter (q) is given by

q = −1 +
β√

2βt+ c
(3.27)

Now we discuss the physical and geometrical behaviour of the cosmological pa-

rameters. We have plotted the various figures with respect to cosmic time t by taking

n = β = 1, n = β = 2, n = β = 3 and c = 1 for the model are shown below:
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Figure 3.1: The plot of H versus cosmic time t.

From eqns. (3.18) and (3.21), it is observed that the Hubble’s parameter H and the

expansion scalar θ are both positive and decreasing functions of cosmic time t. For both

H and θ tend to infinity as t→ 0 and tends to a finite value, when t→ ∞ are shown in
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Figure 3.2: The plot of θ versus cosmic time t
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Figure 3.3: The plot of V versus cosmic time t.

fig.-3.1 and fig.-3.2. The proposed model universe has a point type initial singularity

(MacCallum (1971)). We have also noticed that dH
dt

is negative, which suggests that the

universe is in accelerated phase of expansion.

Eqn. (3.19) shows that at t = 0 the spatial volume V is finite and thereafter increases

continuously when cosmic time t is increasing which shows that the model universe is

expanding with the evolution of time. The nature of fluctuations in V versus cosmic

time t is seen in fig. 3.3.

From eqn. (3.27), we observed that the deceleration parameter q < 0 for t > β2−c
2β

,

which suggests that the model universe is in a accelerated phase of expansion, which are
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Figure 3.4: The plot of ρ versus cosmic time t.
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Figure 3.5: The plot of λ versus cosmic time t

in agrees with present day’s observations (Riess et al. (1998); Garnavich et al. (1998);

Schmidt et al. (1998); Perlmutter et al. (1999)).

The expansion of anisotropic parameter ∆ ̸= 0 (constant) for n ̸= 1 and ∆ = 0 for

n = 1. We also observed from eqn. (3.23) that limt→∞
σ2

θ2
̸= 0 (constant), so, the model

universe is anisotropic one. Though anisotropy is included into the system, it does not

conflict with current evidence that the universe is isotropy. This is due to the fact that

during the process of evolution, the initial anisotropy gradually vanishes after some

duration and approaches to the isotropy and eventually it evolves into a FRW universe

as proposed by Jacobs (Jacobs (1968)).
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Figure 3.6: The plot of the ρp versus cosmic time t.

From fig-3.4 corresponding to the eqn. (3.24), it is seen that the rest energy density

ρ is decreases when time t is increases and initially ρ → ∞ when t → 0, thus has a

point type initial singularity (MacCallum (1971)). Also from this figure, it is observed

that the rest energy density is positive and satisfies the energy condition ρ ≥ 0 for all

n ≥ −1, which shows that the model universe is in a state of accelerating expansion.

It is seen that from fig.-3.5 and fig.-3.6, both the string tension density λ and particle

density ρp are positive, decreasing function of cosmic time t. Initially both the string

tension density λ and particle density ρp tends to infinity when t tends to zero and

become zero as t → ∞ which suggests that the universe began with big bang and as

time progresses, both the string tension density λ and particle density ρp decreases with

the expansion of the universe.


