
Chapter 4

Two-Fluid Scenario for Dark Energy

Cosmological Model in Five

Dimensional Kaluza-Klein Space-Time

4.1 Introduction

In 1998 and the years after, numerous cosmological observations such as ( Perlmutter

et al. (1998); Riess et al. (1998); Perlmutter et al. (1999); Bennett et al. (2003); Spergel

et al. (2003); Riess et al. (2004)) that the universe is not only expanding but also the

acceleration of the expansion from the big-bang till today. DE is the phenomenon

responsible for the accelerating expansion of the universe. Nowadays, cosmologists

have developed many theoretical models to explain the existence of DE.

The evolution of the DE parameter under two-fluid scenario by considering different

form of deceleration parameter has been investigated many prominent authors ( Setare

et al. (2009); Jamil et al. (2010); Amirhashchi et al. (2011a); Amirhashchi et al. (2011b);

Pradhan et al. (2011); Singh and Chaubey (2012); Singh and Chaubey (2013); Saha

et al. (2012); Reddy and Kumar (2013); Samanta and Debata (2013); Pradhan (2014);

Amirhashchi et al. (2014); Rao et al. (2016); Rao and Sireesha (2017); Tripathy et al.

(2017); Tiwari et al. (2017); Tiwari et al. (2018); Tiwari et al. (2018); Goswami et al.

(2020); Mishra et al. (2021)). Recently Kumar et al. (2022) investigated two-fluids

cosmological models with matter and radiating source in (2 + 1)− dimensional Saez-
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Ballester scalar-tensor theory of gravitation. Hatkar et al. (2022) and Trivedi and Bhabor

(2022) has explored the features of Bianchi type-I cosmological universe under two-fluid

scenario within the framework of different theories of gravitation.

In this chapter, we have investigated the 5D Kaluza-Klein homogeneous and

isotropic dark energy cosmological model under two-fluid scenario with special form

of deceleration parameter.

4.2 The metric and Field Equations

The FRW type homogeneous and isotropic 5D Kaluza-Klein space-time has been

considered and it is as follows

ds2 = dt2 − a2(t)

[
dr2

1− kr2
+ r2(dθ2 + sin 2θdϕ2) + (1− kr2)dψ2

]
(4.1)

where a(t) is a scale factor considered to be a function of cosmic time t and

k = −1, 0,+1 is the curvature parameter for open, flat and closed universe respectively.

The Einstein’s field eqn. (with 8πG = 1 and c = 1 ) can be written as

Rij −
1

2
gijR = −Tij (4.2)

where Tij is the two fluid energy momentum tensor consisting of dark fluid and

barotropic fluid.

The energy momentum tensor for two fluid is given by

Tij = Tm
ij + TD

ij (4.3)

where

Tm
ij = (ρm + pm)]µiµj − pmgij (4.4)

TD
ij = (ρD + pD)µiµj − pDgij (4.5)

here ρm and pm are the energy density and pressure of the perfect fluid and ρD and pD

are the energy density and pressure of the DE component.
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The Einstein field eqn (4.2) with (4.3) for the metric (4.1) we may write

6

(
ȧ2

a2
+
k

a2

)
= (ρm + ρD) (4.6)

and

3
ä

a
+ 3

(
ȧ2

a2
+
k

a2

)
= −(pm + pD) (4.7)

Here the over dot indicate a derivatives with respect to cosmic time t.

The energy conservation equation T ij
;j = 0, which yields

ρ̇+ 4
ȧ

a
(ρ+ p) = 0 (4.8)

where p = pm + pD and ρ = ρm + ρD .

The EoS parameter (ω) which is considered as an important quantity in describing

the dynamics of the universe, is given by

pm = (ωm − 1)ρm (4.9)

pD = (ωD − 1)ρD (4.10)

Here, we consider two cases:

Case-I: In which the two fluids do not-interact with each other and

Case-II: When the two fluids interact each other.

4.3 Case-I: Non-interacting Two Fluid Model

In this section, the fluids do not interact with each other. The conservation equation for

the dark and barotropic fluid separatly as

˙ρm + 4
ȧ

a
(ρm + pm) = 0 (4.11)

˙ρD + 4
ȧ

a
(ρD + pD) = 0 (4.12)
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Integrating (4.11) we obtain

ρm = ρ0a
−4ωm (4.13)

where ρ0 is an integrating constant.

Now using (4.13) in (4.6) and (4.7) we obtain ρD and pD in terms of scale factor

a(t).

ρD = 6

(
ȧ2

a2
+
k

a2

)
− ρ0a

−4ωm (4.14)

pD = −3

(
ä

a
+
ȧ2

a2
+
k

a2

)
− ρ0(ωm − 1)a−4ωm (4.15)

Now we assume the special form of deceleration parameter ( Banerjee and Das

(2005); Singha and Debnath (2009); Sahoo et al. (2018)) is given by

q = −aä
ȧ2

= −1 +
α

1 + aα
(4.16)

where α is an arbitrary constant.

After integrating (4.16) we get

a(t) = (emαt − 1)
1
α (4.17)

where m is an integration constant.

From eqns. (4.16) and (4.17), the deceleration parameter q as use

q =
−aä
ȧ2

= −1 +
α

emαt
(4.18)

By using the scale factor a(t) in (4.14) and (4.15) we obtain

ρD = 6[
m2e2mαt

(emαt − 1)2
+

k

(emαt − 1)
2
α

]− ρ0(e
mαt − 1)

−4ωm
α (4.19)

and

pD = −3[
m2emαt(2emαt − α + 1)

(emαt − 1)2
+

k

(emαt − 1)
2
α

]−ρ0(ωm−1)(emαt−1)
−4ωm

α (4.20)
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By using (4.19) and (4.20) in (4.10) we obtain

ωD = −

 3m2emαt(2emαt−α+1)
(emαt−1)2

+ 3k

(emαt−1)
2
α
+ ρ0(ωm − 1)(emαt − 1)

−4ωm
α

6m2e2mαt

(emαt−1)2
+ 6k

(emαt−1)
2
α
− ρ0(emαt − 1)

−4ωm
α

+ 1

(4.21)

The expressions for the matter energy density Ωm and DE density ΩD are given by

Ωm =
ρm
6H2

=
ρ0(e

mαt − 1)
−4ωm

α
+2

6m2e2mαt
(4.22)

and

ΩD =
ρD
6H2

= 1 +
k(emαt − 1)2

6m2e2mαt(emαt − 1)
2
α

− ρ0(e
mαt − 1)

−4ωm
α

+2

6m2e2mαt
(4.23)

From eqns. (4.22) and (4.23) we obtain

Ω = Ωm + ΩD = 1 +
k(emαt − 1)2

6m2e2mαt(emαt − 1)
2
α

(4.24)

4.4 Case-II: Interacting Two Fluid Model

In this section we consider the interaction between dark fluid and barotropic fluid. The

conservation equation for the dark and barotropic fluid are given by

˙ρm + 4
ȧ

a
(ρm + pm) = Q (4.25)

˙ρD + 4
ȧ

a
(ρD + pD) = −Q (4.26)

where the quantity Q represents the interaction between the matter and DE component.

We consider Q > 0, as it shows that the energy transferred from DE to dark matter.

Following Amendola et al. (2007); Guo et al. (2007), we consider

Q = 4Hσρm (4.27)

where σ is an coupling constant.
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Using (4.27) in (4.25) and after integrating we obtain

ρm = ρ0a
−4(ωm−σ) (4.28)

where ρ0 is an integrating constant.

Now using (4.28) in (4.14) and (4.15) we obtain ρD and pD in terms of scale factor

a(t).

ρD = 6

(
ȧ2

a2
+
k

a2

)
− ρ0a

−4(ωm−σ) (4.29)

pD = −3

(
ȧ

a
+
ȧ2

a2
+
k

a2

)
− ρ0(ωm − 1)a−4(ωm−σ) (4.30)

Putting the value of a(t) from (4.17) in eqns. (4.29) and (4.30) we obtain

ρD = 6[
m2e2mαt

(emαt − 1)2
+

k

(emαt − 1)
2
α

]− ρ0(e
mαt − 1)

−4(ωm−σ)
α (4.31)

and

pD = −3[
m2emαt(2emαt − α + 1)

(emαt − 1)2
+

k

(emαt − 1)
2
α

]− ρ0(ωm − 1)(emαt − 1)
−4(ωm−σ)

α

(4.32)

Using (4.31) and (4.32) in (4.10) we obtain

ωD = −

 3m2emαt(2emαt−α+1)
(emαt−1)2

+ 3k

(emαt−1)
2
α
] + ρ0(ωm − 1)(emαt − 1)

−4(ωm−σ)
α

6m2e2mαt

(emαt−1)2
+ 6k

(emαt−1)
2
α
− ρ0(emαt − 1)

−4(ωm−σ)
α

+ 1

(4.33)

The expressions for the matter energy density Ωm and DE density ΩD are given by

Ωm =
ρm
6H2

=
ρ0(e

mαt − 1)
−4(ωm−σ)

α
+2

6m2e2mαt
(4.34)

and

ΩD =
ρD
6H2

= 1 +
k(emαt − 1)2

6m2e2mαt(emαt − 1)
2
α

− ρ0(e
mαt − 1)

−4(ωm−σ)
α

+2

6m2e2mαt
(4.35)



4.5. Physical Interpretation of the Solutions: 58

k=-1

k=0

k=+1

0 2 4 6 8 10 12 14

6

8

10

12

14

Cosmic Time HtL

Ρ
D

n
o
n

-
in

te
ra

ct
iv

e

Figure 4.1: The plot of ρD versus cosmic time t with m = 1,ρ0 = 1,α =
3,ωm = 0.5 and k = −1, 0,+1 for non-interactive case.

From eqns. (4.34) and (4.35) we obtain the total energy density parameter Ω as

Ω = Ωm + ΩD = 1 +
k(emαt − 1)2

6m2e2mαt(emαt − 1)
2
α

(4.36)

For the derived model, the jerk parameter (j) can be written as

j(t) = 1− 3α

emαt
+
α2(emαt + 3)

e2mαt
(4.37)

4.5 Physical Interpretation of the Solutions:

We have plotted the various figures using these calculations for suitable values of the

constants. We also used all the three values of k = −1, 0, 1 while plotting the figures.

Figs. 4.3 and 4.4 represent the variation of pressure for DE for both cases. We

observed that at t→ 0 the pressure pD is negative for open (k = −1) and flat (k = 0)

universe and positive for closed (k = 1) universe. Finally, pressure pD is zero all the

three open, closed and flat universe for late time cosmic evolution.

The behavior of EoS for DE with respect to cosmic time t is shown in figs. 4.5

and 4.6 which correspond to the eqns. (4.20) and (4.33) for both non-interacting and

interacting cases respectively. We observed that from both the figures the EoS parameter

ωD is a decreasing function of time t. At t→ ∞, the EoS parameter ωD tends to zero.

So, the model indicating matter dominated era of the universe .
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Figure 4.2: The plot of ρD versus cosmic time t with m = 1,ρ0 = 1,α =
3,ωm = 0.5 and k = −1, 0,+1 for interactive case.
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Figure 4.3: The plot of pD versus cosmic time t with m = 1,ρ0 = 1,α =
3,ωm = 0.5 and k = −1, 0,+1 for non-interactive case.
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Figure 4.4: The plot of pD versus cosmic time t with m = 1,ρ0 = 1,α =
3,ωm = 0.5 and k = −1, 0,+1 for interactive case.
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Figure 4.5: The plot of ωD versus cosmic time t with m = 1,ρ0 = 1,α =
3,ωm = 0.5 and k = −1, 0,+1 for non-interactive case.
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Figure 4.6: The plot of ωD versus cosmic time t with m = 1, ρ0 = 1, α = 3,
ωm = 0.5 and k = −1, 0,+1 for interactive case.
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Figure 4.7: The plot of q versus cosmic time t with m = 1,α = 3, 4, 5.
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Figure 4.8: The plot of j versus cosmic time t with m = 1,α = 3, 4, 5.

From eqns. (4.23) and (4.36) the total energy density parameter Ω for both non-

interacting and interacting cases are same. From the right hand side of these two

equations it is clear that for k = 0 (i.e for flat universe), Ω = 1 and k = 1 (i.e for closed

universe), Ω > 1 and k = −1 ( i.e for open universe), Ω < 1. We also observed that,

at late time, Ω approaches to 1 for all the three values of k, which is shows that the

universe will acquire a flat structure. These results are fully consistent with the present

day’s observations.

Initially, at t → 0 the deceleration parameter q is positive and then, it decreases

with cosmic time t is increase and at t→ ∞, deceleration parameter q → −1, which

shows that the proposed model universe has a transition from decelerating phase to

accelerating phase of expansion.

A decelerate phase to accelerate phase transition of the universe occurs for models

with a positive value of jerk parameter and negative value of deceleration parameter.

In figs. 4.7 and 4.8 we observed that deceleration parameter q is negative and jerk

parameter j is positive so that we do have a transition of the model from decelerated to

accelerated phase at late time cosmic evolution.


