
Chapter 5

Five Dimensional Kaluza-Klein

Cosmological Model with Variable G

and Λ in Conharmonically Flat Space

5.1 Introduction

The gravitational constantG and the cosmological constant Λ are two crucial parameters

in Einstein’s field equations. As we know, in the year 1917, Einstein first proposed the

cosmological constant Λ as the force of universal repulsion in order to enable the static

homogeneous solution of the Einstein’s field equations in the existence of matter in

accordance with the prevailing accepted theory at that time . The cosmological constant

Λ is one of the most remarkable and unresolved problem in cosmology. After a few years,

several researchers realised that the cosmological constant might be measured as the

vacuum’s energy density, which is the state of lowest energy, more than the vacuum’s

energy-momentum tensor T vac
ij = −ρvacgij and vacuum may also be considered as

perfect fluid with equation of state (EoS) as Pvac = −ρvacgij by taking ρvac = ρΛ = Λ
8πG

and moving with Λgij one can state that the effect of the energy momentum tensor in a

vacuum is identical to Λ. Theoretical and experimental observations, such as the high

red-shift Type Ia Supernovae experiment (SNe.Ia) ( Perlmutter et al. (1998); Riess et al.

(1998); Perlmutter et al. (1999)) has been established that the present universe is in

an accelerated stage of expansion, and dark energy plays a vital role in driving this
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accelerated expansion (Copeland et al. (2006)). According to the latest PLANK 2013

results (Ade et al. (2014)), dark energy accounts for around 68.3% of the total content

of the universe.

A rank four tensor Ll
ijk that retains its invariant form under conharmonic transfor-

mation for an n-dimensional Riemannian differentiable manifold is given by

Ll
ijk = Rl

ijk −
1

n− 2
(gijR

l
k − gikR

l
j + δlkRij − δljRik), (5.1)

where Rl
ijk and Rij are the Riemannian curvature tensor and the Ricci tensor

respectively. Equation (5.1) is known as the conharmonic curvature tensor. A space

time in which Rl
ijk vanish at each point is called a conharmonically flat space time.

The conharmonic curvature tensor shows the deviation of the space time from

conharmonic flatness. Ahsan and Siddiqui (2009) discussed the significance of the

conharmonic curvature tensor in four dimensional space time in general relativity.

Siddiqui and Ahsan (2010) also studied the nature of the conharmonic curvature tensor

in perfect fluid in the space time context of the general theory of relativity. Tiwari and

Singh (2015) studied the role of conharmonically flat FRW space-time in the presence

of cosmological constant Λ by taking Λ = 3βH2, where β is a constant. Tiwari

(2016) investigated the solution of conharmonic curvature tensor in general relativity.

They solved Einstein’s field equations by using the law of variation of a cosmological

constant with am, where a is a scale factor and m is a constant. Tiwari and Shrivastava

(2017) have investigated FRW cosmological model for conharmonically flat space time.

Einstein’s field equations with variable cosmological term are solved by using variable

deceleration parameter. Goyal et al. (2019) have discussed a new class model of an

accelerating FRW universe with time dependent variable G and Λ in conharmonically

flat space. Recently Pradhan et al. (2020) studied a new class of holographic dark

energy models in conharmonically flat space. Einstein’s field equations are solved by

considering the cosmological scale factor in the form of a hybrid expansion law.

In this chapter, we have investigated the 5D Kaluza-Klein cosmological models

with time-dependent gravitational and cosmological constants in conharmonically flat

space with the help of a variable deceleration parameter (DP). This chapter has been

organised as follows: In Sec. 5.2, the metric and Einstein’s field equations have been



5.2. Metric and Field Equations 64

presented. In Sec. 5.3, the solution of Einstein’s field equations is obtained. In Sect.

5.4, we discussed the geometrical and physical interpretation of the results.

5.2 Metric and Field Equations

A spatially homogeneous and isotropic 5D Kaluza-Klein space-time is given by

ds2 = dt2 − a2(t)

[
dr2

1− kr2
+ r2(dθ2 + sin 2θdϕ2) + (1− kr2)dψ2

]
, (5.2)

where a(t) represents the cosmic scale factor, which depicts how these distances

(scales) change in contracting or expanding the universe and k is curvature parameter,

which describes geometry of the spatial section of space time with an open (k = −1),

flat (k = 0) and closed (k = 1) universe and the fifth coordinate ψ is taken to be an

extended space like coordinate respectively.

The Einstein’s field equations with time-dependent G and Λ can be written as

Rij −
1

2
gijR = 8πGTij − Λgij, (5.3)

where Rij is the Ricci tensor R is the Ricci scalar gij is the metric tensor and Tij is

the energy momentum tensor of a perfect fluid given by

Tij = (ρ+ p)uiuj − pgij, (5.4)

where ρ and p are energy density and isotropic pressure of the cosmic fluid and ui

is the five velocity vector with uiui = 1.

The conharmonic curvature tensor for a relativistic 5Dl space-time is given by

Ll
ijk = Rl

ijk −
1

3
(gijR

l
k − gikR

l
j + δlkRij − δljRik), (5.5)

For conharmonically flat space-time Ll
ijk = 0, we obtain

3Rl
ijk = gijR

l
k − gikR

l
j + δlkRij − δljRik. (5.6)

Contracting above equation with j = l and obtaining summation over j, we obtain
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Rik = −1

5
Rgik. (5.7)

For conharmonically flat space-time, using the above equation the Einstein’s field

equation (5.3) reduce to

Rij =
16

7
πGTij −

2

7
Λgij. (5.8)

In co-moving coordinates system, for the flat (k = 0) metric (5.2) , the energy

momentum tensor (5.4) and Einstein’s field equation (5.8) it follows that

8πGρ− Λ = −14(Ḣ +H2) (5.9)

8πGp+ Λ =
7

2
(Ḣ + 4H2) (5.10)

where H = ȧ
a

is the Hubble parameter and over head dot denotes the derivatives

with respect to cosmic time t.

The equation of state parameter (ω) which is considered as an important quantity in

describing the dynamics of the universe in the ratio of the pressure (p) and the energy

density (ρ) are given by

p = ωρ (5.11)

In the field equation (5.8), the cosmological constant Λ accounts for vacuum energy

with its energy density ρν and pressure pν satisfying the equation of state

pν = −ρν = − Λ

8πG
(5.12)

The critical density and the density parameters for matter and cosmological constant

are defined as

ρc =
6H2

8πG
(5.13)

ΩM =
ρ

ρc
=

8πG

6H2
(5.14)
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ΩΛ =
ρν
ρc

=
Λ

6H2
(5.15)

5.3 Solution of the Field Equations

The set of field equations (5.9) and (5.10) are the system of two linearly independent

equations with five unknown parameters p, ρ,G,Λ and H .

So first, we assume a power-law relation between the gravitational constant G and

the scale factor a as proposed by Chawla et al. (2012) and recently used Goyal et al.

(2019)

G ∝ am (5.16)

where m is a constant. For the sake of mathematical simplicity, eqn. (5.16) may be

written as

G = G0a
m (5.17)

where G0 is a positive constant.

Secondly, we assume that the deceleration parameter (q) as a linear function of

Hubble’s parameter (Tiwari et al. (2015); Tiwari et al. (2018); Sharma et al. (2019);

Dubey et al. (2021)).

q = −aä
ȧ2

= βH + α (5.18)

Here α and β are arbitrary constants.

From eqn. (5.18) we have

aä

ȧ2
+ β

ȧ

a
+ α = 0 (5.19)

By solving the eqn. (5.19) we obtain

a(t) = e[−
(1+α)

β
t− 1

(1+α)
+ l

β
] (5.20)
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provided α ̸= −1 and l denotes constant of integration. For α = 0 , we obtain

q = −1.

We take α = −1 in eqn. (5.18) we have

q = −aä
ȧ2

= −1 + βH (5.21)

which yields the following differential equation

aä

ȧ2
+ β

ȧ

a
− 1 = 0 (5.22)

which on integration gives

a(t) = e
4
β

√
2βt+c (5.23)

where c denotes constant of integration.

From eqn. (5.23) the deceleration parameter is determined as

q = −1 +
β√

2βt+ c
(5.24)
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Figure 5.1: The plot of q versus cosmic time t, for β = 1, 1.5, 2, 2.5, c = 1.

There is a signature flipping in the deceleration parameter for the universe which

was decelerating (q > 0 for t < β2−c
2β

) in the past and has been accelerating (q < 0

for t > β2−c
2β

) at present era (Sahoo et al. (2018);Goyal et al. (2019)). Also, current
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observations of Type Ia Supernovae (Riess et al. (1998); Garnavich et al. (1998);

Schmidt et al. (1998); Perlmutter et al. (1999)) expose that the present universe is

accelerating and the value of the deceleration parameter (q) can be found nearby in the

range −1 < q < 0. Variation of q versus cosmic time t is plotted in Fig. 5.1.

Using (5.23) the model universe (5.2) becomes

ds2 = dt2 − e
4
β

√
2βt+c

[
dr2

1− kr2
+ r2(dθ2 + sin 2θdϕ2) + (1− kr2)dψ2

]
, (5.25)

5.4 Physical Parameters of the Model and its Behaviour

For the cosmological model (5.25), the spatial volume (V), Hubble parameter (H),

expansion scalar (θ), the gravitational constant (G), energy density (ρ), pressure(p),

cosmological constant (Λ), vacuum energy density (ρν), critical density (ρc) and the

density parameter (ΩM ,ΩΛ) are obtained as follows:

V = e
4
β

√
2βt+c (5.26)

H =
1√

2βt+ c
(5.27)

θ =
4√

2βt+ c
(5.28)

G = G0e
m
β

√
2βt+c (5.29)

ρ =
21β

16πG0(1 + ω)e
m
β

√
2βt+c(2βt+ c)

3
2

(5.30)

p =
21ωβ

16πG0(1 + ω)e
m
β

√
2βt+c(2βt+ c)

3
2

(5.31)

Λ = − 7β(1 + 4ω)

2(1 + ω)(2βt+ c)
3
2

+
14

2βt+ c
(5.32)
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pν = −ρν = − 1

8πG0e
m
β

√
2βt+c

[− 7β(1 + 4ω)

2(1 + ω)(2βt+ c)
3
2

+
14

2βt+ c
] (5.33)

ρc =
3

4πG0(2βt+ c)e
m
β

√
2βt+c

(5.34)

ΩM =
7β

4(1 + ω)
√
2βt+ c

(5.35)

ΩΛ = − 7β(1 + 4ω)

12(1 + ω)
√
2βt+ c

+
7

3
(5.36)

Ω = ΩM + ΩΛ =
7

3
+

7β(1− 2ω)

6(1 + ω)
√
2βt+ c

(5.37)

The following are the three types of physical acceptable universes (ω = 0, 1, 1
3
):

5.4.1 Matter Dominated Solution (Cosmology for ω = 0)

For ω = 0 in this case we obtained the expression for physical quantities as follows:

ρ =
21β

16πG0e
m
β

√
2βt+c(2βt+ c)

3
2

(5.38)

p = 0 (5.39)

Λ = − 7β

2(2βt+ c)
3
2

+
14

2βt+ c
(5.40)

pν = −ρν = − 1

8πG0e
m
β

√
2βt+c

[− 7β

2(2βt+ c)
3
2

+
14

2βt+ c
] (5.41)

ρc =
3

4πG0(2βt+ c)e
m
β

√
2βt+c

(5.42)

ΩM =
7β

4
√
2βt+ c

(5.43)
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ΩΛ = − 7β

12
√
2βt+ c

+
7

3
(5.44)

Ω = ΩM + ΩΛ =
7

3
+

7β

6
√
2βt+ c

(5.45)

5.4.2 Zeldovich Fluid Distribution (Cosmology for ω = 1)

For ω = 1 in this case the expressions for physical quantities are obtained as follows:

ρ =
21β

32πG0e
m
β

√
2βt+c(2βt+ c)

3
2

(5.46)

p =
21β

32πG0e
m
β

√
2βt+c(2βt+ c)

3
2

(5.47)

Λ = − 35β

4(2βt+ c)
3
2

+
14

2βt+ c
(5.48)

pν = −ρν = − 1

8πG0e
m
β

√
2βt+c

[− 35β

4(2βt+ c)
3
2

+
14

2βt+ c
] (5.49)

ρc =
3

4πG0(2βt+ c)e
m
β

√
2βt+c

(5.50)

ΩM =
7β

8
√
2βt+ c

(5.51)

ΩΛ = − 35β

24
√
2βt+ c

+
7

3
(5.52)

Ω = ΩM + ΩΛ =
7

3
− 7β

12
√
2βt+ c

(5.53)

5.4.3 Radiating Dominated Solution (Cosmology for ω = 1
3)

When ω = 1
3

we obtained the radiating dominated solution of the Einstein’s field

equation. In this case we obtained the expression for physical quantities as follows:
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ρ =
63β

64πG0e
m
β

√
2βt+c(2βt+ c)

3
2

(5.54)

p =
21β

64πG0e
m
β

√
2βt+c(2βt+ c)

3
2

(5.55)

Λ = − 21β

8(2βt+ c)
3
2

+
14

2βt+ c
(5.56)

pν = −ρν = − 1

8πG0e
m
β

√
2βt+c

[− 21β

8(2βt+ c)
3
2

+
14

2βt+ c
] (5.57)

ρc =
3

4πG0(2βt+ c)e
m
β

√
2βt+c

(5.58)

ΩM =
21β

16
√
2βt+ c

(5.59)

ΩΛ = − 49β

64
√
2βt+ c

+
7

3
(5.60)

Ω = ΩM + ΩΛ =
7

3
+

35β

64
√
2βt+ c

(5.61)
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Figure 5.2: The plot of G versus cosmic time t, for β = 1,m = 0.5, 1, 1.5.
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Figure 5.3: The plot of Λ versus cosmic time t, for β = 1, ω = 0, 1, 1
3
.
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Figure 5.4: The plot of ρ versus cosmic time t, for β = m = 1, ω = 0, 1, 1
3
.

From eqns. (5.27) and (5.28), it has been observed that the Hubble’s parameter and

expansion scalar both decreases as time increases . As t→ ∞ the Hubble’s parameter

and expansion scalar tends to a finite value. The derived model universe has a point type

initial singularity (MacCallum (1971)). Also we observed that dH
dt

is negative which

indicates that the model universe is expanding with an accelerated rate. The spatial

volume is finite as t = 0 and it expands as time t increases and becomes infinity as

t→ ∞, so the model represents an expanding universe.
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Figure 5.5: The plot of p versus cosmic time t, for β = m = 1, ω = 0, 1, 1
3
.

Eqn. (5.29), represents the expression for the gravitational constant G for the model

(5.25). Fig.5.2 shows that the variation of G with respect to cosmic time t for β = 1

and three different value of m = 0.5, 1, 1.5. From this figure, we observed that G is a

positive increasing function of time, and tends to infinity as t→ ∞, which suggest that

the present universe is expanding (Abdel-Rahman (1990)). The model universe shows

that the gravitational constant G varies with cosmic time t as suggested by Dirac (Dirac

(1937)).

Eqn. (5.32), represents the expression for the cosmological constant Λ for the model

(5.25). In Fig. 5.3 we have shown the variation of Λ versus cosmic time t for all three

values of ω = 0, ω = 1 and ω = 1
3

corresponding to matter dominated model, zeldovich

model and radiating dominated model respectively. From this figure we observed that

cosmological constant Λ is infinite as t→ 0 and as t→ ∞, the cosmological constant

Λ converging to a small positive value. Such type of behavior for Λ shows that the

expansion will tends to accelerate, which is in good agreement with Type Ia Supernova

observations ( Perlmutter et al. (1998); Riess et al. (1998); Perlmutter et al. (1999);

Bennett et al. (2003); Riess et al. (2004)).

From eqns. (5.30) and (5.31), represents the expressions for energy density ρ

and pressure p for the model (5.25). Figs. 5.4 and 5.5 shows that the variation of

ρ and p versus cosmic time t for all three types of models of the universe, matter
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dominated model ω = 0, Zeldovich model ω = 1 and radiating dominated model ω = 1
3

respectively. From these figures, it is seen that the energy density ρ and pressure p both

are diverges as t→ 0 and becomes zero as t→ ∞, thus has an initial singularity.

Eqn. (5.37) represents the expression for total energy density Ω. We observed that

Ω → 2.33 as t → ∞. From the present day’s observation, the value of total energy

density Ω → 1 . But in the proposed model the value of total energy density Ω → 2.33

as t→ ∞ (recently Goyal et al. (2019) found Ω → 3 ) . This difference comes out due

to use of conharmonically flat space which reduced the Einstein’s field equations in to

the form given by eqn. (5.8).


