

DEPARTMENT OF ZOOLOGY BODOLAND UNIVERSITY

Debargaon, P.O. - Rangalikhata Kokrajhar – 783 370, BTAD, Assam

Ananta Swargiary, M.Sc., Ph.D. Assistant Professor

Ph. No.: +91-8638137477

Email: ananbuzoo101@gmail.com

CERTIFICATE

This is to certify that the Ph.D. thesis entitled "Bioactivity-Guided Isolation, Purification, and Characterization of an Anthelmintic Compound from Hypericum japonicum Thunb." is an independent and original work carried out by Mritunjoy Kumar Roy, Ph.D. Scholar, Department of Zoology, Bodoland University, under my guidance and supervision.

I further certify that **Mritunjoy Kumar Roy** has fulfilled all the requirements as per the Ph.D. Regulations of Bodoland University for the submission of his doctoral thesis.

I wish him success in life.

Ph.D. Guide

Dr. Ananta Swargiary

Assistant Professor

Department of Zoology

Bodoland University

DR. ANANTA SWARGIARY DEPART, ENT OF ZOOLOGY BODOLAND UNIVERSITY KOKRAJHAR

SELF-DECLARATION CERTIFICATE

I hereby declare that the thesis entitled "Bioactivity-Guided Isolation, Purification, and Characterization of an Anthelmintic Compound from Hypericum japonicum Thunb.", submitted by me to Bodoland University, in partial fulfillment of the requirements for the award of the Doctor of Philosophy (Ph.D.) degree, is a record of bonafide research work carried out by me under the supervision of Dr. Ananta Swargiary.

I further declare that this work has not been submitted previously for the award of any degree, diploma, or other similar titles in this or any other university or institution.

PhD Guide

Dr. Ananta Swargiary

Assistant Professor

Department of Zoology

Bodoland University

Mritunjoy Kumar Roy

Research Scholar

ZOOPhD19004

FINALZOO00275

DEPART, ENT OF ZOOLOGY BODOLAND UNIVERSITY KOKRAJHAR

"I dedicate this achievement to my family and closest companions, whose constant encouragement and support made this milestone possible. This degree is as much theirs as it is mine."

ACKNOWLEDGEMENT

I express my deepest gratitude to my supervisor, Dr. Ananta Swargiary, Assistant Professor, Department of Zoology, Bodoland University (BU), for his invaluable guidance, constant support, and encouragement throughout my Ph.D. work. His insightful suggestions, patience, and mentorship have played a crucial role in shaping my research work. I am truly grateful for his dedication and for providing me with the opportunity to learn and grow under his supervision.

I also extend my sincere appreciation to the **DST-INSPIRE Fellowship** for providing financial assistance, which made it possible for me to carry out my research work. Their support has been instrumental in the successful completion of my Ph.D.

I extend my sincere gratitude to Dr. Manjil Basumatary, Academic Registrar, Bodoland University, Prof. Sujit Deka, Dean, Faculty of Science and Technology, and Dr. Prahlad Basumatary, Director of Students' Welfare (i/c), for graciously sparing their time to attend all my Ph.D. presentation and offering invaluable insights and suggestions.

I extend my sincere thanks to the Department of Botany, Bodoland University, especially Dr. Sanjib Baruah, Assistant Professor, and Dr. Sanswarang Basumatary, for their assistance in identifying the plant species. I am also grateful to Dr. Hemen Sarma, Head of the Department of Botany, and Dr. Rebecca Daimari, Assistant Professor, Department of Botany, for granting me access to various laboratory instruments whenever required for my research. I am deeply thankful to Prof. Sanjay Basumatary, Department of Chemistry, Bodoland University, for his valuable guidance and support in chromatography-related work. I sincerely acknowledge Prof. Sandeep Das, Head, Department of Biotechnology, Bodoland University, for providing essential research facilities and access to SEM, HPLC, and microscopic analysis at the Technology Incubation Centre (TIC), BU. I would also like to extend my gratitude to Dr. Raju Ali, other lab members of TIC Dr. Vashkar Biswa, Miss Nisha Rani Brahma, Mr. Tikendrajit Baro, Miss Debajani Das for their support and assistance with these analyses.

I would like to express my sincere gratitude to to Dr. Rajiv Chandra Dev Goswami and Shri. Kamal Guali, Biotech Park, Guwahati, for carrying out the GC-MS analysis, North-Eastern Hill University (NEHU) for the trace element study, and the Institute of Advanced Study in Science and Technology (IASST) and NIPER, Guwahati, for conducting the LC-MS

analysis. I am deeply grateful to Dr. Prakash Brahma, Veterinary Doctor, and his office staff for their invaluable assistance in the collection of helminth parasites for my study.

I also take this opportunity to extend my sincere thanks to Dr. Kushal Choudhury, Head of the Department of Zoology, Bodoland University, for his constant support. I am equally grateful to Prof. Hilloljyoti Singha for his encouragement and guidance. My heartfelt appreciation goes to Dr. Dulur Brahma, Assistant Professor, Department of Zoology, Mr. Bihung Basumatary, Assistant Professor, Department of Zoology, and Dr. Bronson Kumar Khangembam, Assistant Professor, Department of Zoology, BU, for their valuable advice and kind support.

I would also like to thank my lab members, especially Dr. Manita Daimari, Mr. Harmonjit Boro, and Mr. Himangshu Baruah, for their cooperation and assistance during my Ph.D. research. I would also like to thank my senior Ph.D mates Dr. Fanleng Narzary, Dr. Paris Basumatary and my also my Ph.D mates Dr. Hatarkhi Mwchahary, Mr. Rajib Ratam Kashyap and Mrs. Bichitra Narzary for their support throughtout my Ph.D Journey.

I would also like to thank my family members Mr. Basanta Kumar Roy, Mrs. Mikashi Sarkar, Mrs. Balaka Roy, Mr. Mondip Kumar Roy, Sidhhanta Rajbongshi and Simanta Rajbongshi, Miss Nisha Rani Brahma, and all my friends for their constant support during the entire journey.

I also would like to acknowledge the people how have helped me throughout the Ph.D work or journey at several points, Dr. Partha Pratim Sarma, Miss Nijwm Mushahary, Miss Sujata Brahma, Mr. Abdul Hamid, Mr. Babul Khan, Mr. Lenient Roy, Mr. Priyam Dam, Miss Siri Fung Basumatary, Mr. Dwihung Brahma, Mr. Detsinfa Basumatary, Mr. Sailendra Barman, Mr. Rupak Kumar Roy, Mr. Sanjoy Kundu.

Finally, I extend my sincere gratitude to the University administration, faculty members, staff, and all other members of Bodoland University for their help and support throughout my research work.

Mritunjoy Kumar Roy

ABBREVIATIONS

(NH₄)₂MoO₄ Ammonium molybdate

 $\begin{array}{ccc} \mu g & & \text{Micro gram} \\ \mu L & & \text{Micro litre} \end{array}$

2D Two dimension

3D Three dimension

AAE Ascorbic acid equivalent

Abs Absorbance

ABTS 2,2'-Azinobis-(3-Ethylbenzothiazoline-6-Sulfonate)

AchE Acetylcholinesterase

AchI Acetylthiocholine iodide

ACP Acid phosphatise

ADMET Absorption—distribution—metabolism—excretion—

toxicity

AlCl₃ Aluminium chloride
ALP Alkaline phosphatase
BSA Bovin serum albulim

Cd Cadmium

CH₃COONa Sodium acetate
CO₂ Carbon dioxide

Cr Chromium
Cu Copper

 Cu^+ Cuprous ions Cu^{2+} Copper ions DE Diethyl ether

DL Dalton's lymphoma

DMSO Dimethyl sulfoxide

DPPH 1,1-Diphenyl-2-Picrylhydrazyl

DPX Dibutylphthalate Polystyrene Xylene

DTNB 5,5-dithiobis(2-nitrobenzoic acid)

EA Ethyl acetate

EDTA Ethylenediaminetetraacetic acid

FCR Folin-Ciocalteu reagent

FE Fe²⁺ equivalent

 Fe^{2+} Ferrous iron Fe^{3+} Ferric iron

FeCl₃ Ferric {Iron (III)} chloride

FeSO₄ Ferrous sulphate

FRAP Ferric Reducing Antioxidant Power

GAE gallic acid equivalent

h hours

H₂SO₄ Sulfuric acid

HB hydrogen bond

HCl Hydrochloric acid

HClO₄ Perchloric acid

Hex Hexane

HNO₃ Nitric acid

HPLC High-performance liquid Chromatography

K₂S₂O₈ Potassium persulphate

Kcal Kilo Calorie kJ Kilo Joules

LC-MS Liquid Chromatography- Mass spectrometry

LDH Lactate dehydrogenase

M Morality

MCEHJ methanolic crude extract of *Hypericum japonicum*

MDA Malondialdehyde

MDH Malate dehydrogenase

mg Milligram

MgCl₂ Magnesium chloride

 $\begin{array}{ccc} \mu M & & Micro \ mole \\ min & & Minutes \\ mL & & Millilitre \end{array}$

mM Milli molar

MMPBSA Molecular Mechanics/Poisson Boltzmann Surface

Area

MTT 3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium

bromide

N Normality

Na₂CO₃ Sodium carbonate Na₃PO₄ Sodium phosphate

NADH Reduced nicotinamide adenine dinucleotide

NaOH Sodium hydroxide

NCBI National Center for Biotechnology Information

NIPER-G National Institute of Pharmaceutical Education and

Research, Guwahati

nm Nanometer
nM Nano Mole
ns Nanoseconds
O.D Optical Denstiy

Pb Lead

PBS Phosphate-buffered saline

PDB Protein Data Bank

pNP p-nitrophenol

pNPP p-nitrophenyl phosphate

QE Quercetin equivalent

Rg Radius of gyration

RMSD Root mean square deviation

RMSF Root mean square fluctuations

ROS Reactive oxygen species

Rpm Revolutions per minute

SAIF Sophisticated Analytical Instrument Facility

SD Standard deviation
SDF Structure Data File

SDS Sodium dodecyl sulphate

SEM Scanning Electron Microscopy

TBA Thiobarbituric acid
TCA Trichloroacetic acid

TFC Total flavonoid content

VIII

TIC Technology Incubation Centre

TLC Thin Layer Chromatography

TPC Total phenolic content

TPTZ 2,4,6-tripyridyl-s-triazine

TRABS Thiobarbituric acid reactive species

V/V Volume per volume w/v Weight by volume

Zn Zinc

LIST OF FIGURES

Figure no.	Figure Title	Page
		no.
Figure 1:	Images of some of infection caused by helminth parasites	8
Figure 2:	Hypericum japonicum	16
Figure 3:	Separation of phytocompounds in smaller Thin Layer Chromatography	72
Figure 4:	Separation of phytocompounds in larger Thin Layer Chromatography	72
Figure 5:	HPLC analysis of TLC (A) extract of Hypericum japonicum. (a) The	74
	whole set up of HPLC machine, and (b) Injecting of sample	
Figure 6:	Sample processing and viewing of SEM. (a) The whole set up of SEM,	75
	(b) gold coating of the parasite, and (c) Sample after gold coating	
Figure 7:	The set up for Molecular Dynamics simulation study	80
Figure 8:	Collection and identification of test plant. (a) Hypericum japonicum	83
	and (b) Herbarium sheet of Hypericum japonicum	
Figure 9:	(a) Standard graph of protein (BSA), and (b) Standard graph of	85
	carbohydrate (glucose)	
Figure 10:	(a) Standard graph of phenolics (gallic acid), and (b) Standard graph of	86
	flavonoids (quercetin)	
Figure 11:	Protein, Carbohydrate, TFC, and TPC of different solvent fractions.	86
	Values are expressed as mean \pm SD, n = 3 (no. of experiments).	
	Protein, carbohydrate and TPC showed mean difference is significant	
	among the four solvent extracts at $P \leq 0.05$ level, except at TFC	
	(diethyl ether and ethyl acetate shown by '*')	
Figure 12:	(a) Standard graph of FRAP (ferrous sulphate), and (b) Standard graph	90
	of Total antioxidant assay (ascorbic acid)	
Figure 13:	TAC and FRAP activity of different solvent fractions. Values are	90
	expressed as mean \pm SD, n = 3 (no. of experiments). TAC and FRAP	
	showed mean difference is significant among the four solvent extracts	
	at $P \le 0.05$ level	
Figure 14:	DPPH scavenging activity of different solvent fractions of Hypericum	91

	japonicum. Values are expressed as mean \pm SD, n = 3 (no. of	
	experiments). All the solvent fractions showed mean difference is	
	significant among the four solvent extracts at $P \le 0.05$ level	
Figure 15:	ABTS activity of different solvent fractions of Hypericum japonicum.	91
	Values are expressed as mean \pm SD, n = 3 (no. of experiments). All the	
	solvent fractions showed mean difference is significant among the four	
	solvent extracts at $P \le 0.05$ level	
Figure 16:	TBARS activity of different solvent fractions of Hypericum japonicum.	92
	Values are expressed as mean \pm SD, n = 3 (no. of experiments). All the	
	solvent fractions showed mean difference is significant among the four	
	solvent extracts at $P \leq 0.05$ level, except diethyl ether and ethyl acetate	
Figure 17:	Histological sections of control parasite (a-c). Magnification, a) 4x, b)	94
	20x, and c) 40x, scale bar in micrometer (µm)	
Figure 18:	Histological sections of control parasite when treated with albendazole	95
	(a-c). Magnification, (a) 4x, (b) 20x, and (c) 40x, scale bar in	
	micrometre (µm)	
Figure 19:	Histological sections of control parasite when treated with Diethyl	95
	ether extract (a-c). Magnification, (a) 4x, (b) 20x, and (c) 40x, scale bar	
	in micrometer (µm)	
Figure 20:	Acid phosphatase (ACP), Alkaline phosphatase (ALP), Lactate	98
	dehydrogenase (LDH), Malate dehydrogenase (MDH) and	
	Acetylcholinesterase (AchE) enzyme, activity of control and plant	
	extract treated parasite. Values are expressed as mean \pm SD, n = 3	
	(three replicates). All the enzyme activities showed significant	
	difference between control and plant extract-treated parasites at P \leq	
	0.05 level, except AchE enzyme	
Figure 21:	LC-MS chromatogram of TLC (fraction A) extract of Hypericum	101
	japonicum (diethyl ether extract)	
Figure 22:	HPLC chromatogram of TLC (fraction A) extract of H. japonicum	102
	(diethyl ether extract)	
Figure 23:	Histological sections of control parasite (a-c). Magnification, a) 4x, b)	103
	20x, and c) 40x, scale bar in micrometer (μm)	

Figure 24:	Histological sections of parasite treated with quercetin (a-c).	104
	Magnification, a) 4x, b) 20x, and c) 40x, scale bar in micrometer (μm)	
Figure 25:	Histological sections of parasite with albendazole (a-c). Magnification,	104
	a) 4x, b) 20x, and c) 40x, scale bar in micrometer (µm)	
Figure 26:	Scanning electron micrographs of control parasite (a & b) showing the	105
	tegument part with scale 100 μm and 20 μm , and (c) Body surface of	
	control parasite with scale 10 µm	
Figure 27:	Scanning electron micrographs of quercetin treated parasite (a & b)	105
	showing the tegument part with scale 100 µm and 10 µm, and (c)	
	Body surface of control parasite with scale 10 μm	
Figure 28:	Scanning electron micrographs of albendazole treated parasite (a & b)	105
	showing the tegument part with scale 100 µm and 20 µm, and (c)	
	Body surface of control parasite with scale 10 µm	
Figure 29:	Acid phosphatase (ACP), Alkaline phosphatase (ALP), Lactate	107
	dehydrogenase (LDH), Malate dehydrogenase (MDH) and	
	Acetylcholinesterase (AchE) enzyme, activity of control, quercetin and	
	albendazole treated parasite. All the enzyme activities showed	
	significant difference between control and treated parasites at $P \leq 0.05$	
	level, except AchE enzyme	
Figure 30:	Structural assessment of Acetylcholinesterase; (a) model, and (b)	108
	template protein	
Figure 31:	Structural assessment of Acid phosphatase; (a) model, and (b) template	108
	protein	
Figure 32:	Structural assessment of Alkaline phosphatase; (a) model, and (b)	109
	template protein	
Figure 33:	Structural assessment of Lactate dehydrogenase (a) model, and (b)	109
	template protein	
Figure 34:	Structural assessment of Malate dehydrogenase (a) model, and (b)	110
	template protein	
Figure 35:	Structure of quercetin, a) 2D and b) 3D	111
Figure 36:	2D binding affinities of enzymes and Quercetin (Q) (a) AchE & Q (b)	112
	$\triangle CP \& O (c) \triangle IP \& O (d) IDH \& O and (d) MDH \& O$	

Figure 37:	Molecular docking and 3D binding affinities of enzymes and Quercetin	113
	(a) AchE & Q (b) ACP & Q, (c) ALP & Q (d) LDH & Q and (e) MDH	
	& Q. Ligand colour: quercetin = yellow, albendazole = purple and cyan	
Figure 38:	ADMET properties of quercetin and albendazole	116
Figure 39:	2D display of binding interaction between Acetylcholinesterase and	117
	quercetins at (a) 10 ns (b) 20 ns, (c) 50 ns (d) 70 ns, and (d) 100 ns	
Figure 40:	3D display of binding interaction between AchE and quercetins at (a)	117
	10 ns (b) 20 ns, (c) 50 ns (d) 70 ns, and (d) 100 ns	
Figure 41:	Conformational changes in the AchE complexes showing (a) RMSD of	119
	apo protein (AchE), AchE-Q and AchE-Alb with solvent, (b) RMS	
	Fluctuation of amino acid residues	
Figure 42:	Radius of gyration of (a) AchE apo protein, and (b) Quercetin &	119
	albendazole-bound AchE complex, AchE = Acetylcholinesterase , $Q =$	
	Quercetin, Alb = Albendazole, Apo-protein = AchE	
Figure 43:	Conformational changes in the AchE-quercetin complexes showing (a)	121
	total H bond between protein and solvent system, (b) H-bonds (HB)	
	between quercetin and albendazole with AchE protein. AchE =	
	$Acetylcholinesterase \ , \ Q = Quercetin, \ Alb = Albendazole, \ Apo-protein$	
	= ligand unbound AchE	
Figure 44	Total energy (-kJ/mol) of (a) AchE apo-protein, and (b) quercetin-	121
	bound AchE, and albendazole-bound AchE, AchE =	
	Acetylcholinesterase , Q = Quercetin, Alb= Albendazole, Apo-protein	
	= Ligand unbound AchE	
Figure 45	Free energy changes (Delta values) of protein complexes with (a)	123
	Ouercetin and (b) Albendazole. All values are presented in kJ/mol	

LIST OF TABLES

Table no.	Figure Title	Page no.
Table 1:	Qualitative analysis of different solvent extracts of Hypericum	84
	japonicum	
Table 2:	Trace element composition of Hypericum japonicum	87
Table 3:	Anthelmintic activity of different solvent fractions of <i>Hypericum japonicum</i>	93
Table 4:	Anthelmintic activity of different fractions of Hypericum japonicum	100
Table 5:	Anthelmintic activity of quercetin with different doses	103
Table 6:	Binding energies (-kcal/mol) of Hypericum japonicum	111
	phytocompounds with different enzymes	
Table 7:	Lipinski's data of drug-likeness properties	113
Table 8:	Free energy changes (Delta values) of protein complexes (values are presented in kJ/mol)	123

LIST OF PHOTO PLATES

Photo plate no	Photo plate Title
Photo plate 1:	Life cycle of Paramphistomum species along with the photos of the
	species
Photo plate 2:	Preparation of methanolic extract of Hypericum japonicum
Photo plate 3:	Solvent fractionation of plant extract of Hypericum japonicum
Photo plate 4:	Treatment of helminth parasite with solvent fractions of Hypericum
	japonicum
Photo plate 5:	Qualitative analysis of phytocompounds in solvent fractions of
	Hypericum japonicum
Photo plate 6:	Qualitative analysis of phytocompounds in solvent fractions of
	Hypericum japonicum
Photo plate 7:	Separation of phytocompounds in Thin Layer Chromatography using
	different solvent system. Slide size: 7.5 x 2.5 c
Photo plate 8:	Separation of phytocompounds using larger TLC. Slide size: 21x17 cm
	(HxB), Solvent system: Petroleum ether: Ethyl acetate (1:1, v/v)