CHAPTER 6

Separation Axioms in Neutro-Topological and Anti-

Topological Spaces

In this chapter some separation axioms are studied in N-TSs as well as in A-TSs and
various hereditary properties that are generally true in topological spaces are observed
minutely and various comparisons are made among the various spaces that have been
introduced in N-TSs and A-TSs. Many of the hereditary and other relevant properties
are found to follow in the N-TS and A-TS with certain exceptions, the reasons for which

have been given.

6.1 Separation Axioms in Neutro-Topological Spaces

Definition 6.1.1

A N-TS (X, T) will be called a Nu-T, space (T{' in short) if for arbitrary elements m =
n there exists Q@ € T for which, ifm e Q,n ¢ Q or, ifn € Q, m ¢ Q. In other words, for
any set of two unequal points in the space there will exist a N-OS that contains one of

the points but not the other.

Proposition 6.1.1

Let a N-TS (X,7) be a T}’ space. Then for distinct points: x,y € X, we have:
[V n [}V = 0,

Proof:

Let (X,T) be T and x # y be arbitrary elements in X, then there will be g € T so
that whenever x € o,y & g or, whenevery € o, x & .

Now, whenever x € g, {x} € g and whenever y & o, {y} &

Again, whenever {x} € g, [{x}]V*~¢ c pN¥=¢ by proposition 2.3.3 (iii)

Also, {y} g = [{(y}]" < & e,

Thus, [{x}]"*=¢ n [{y}]"*~¢ = 0.

The neutro-topology part of this chapter has been communicated to an international journal for publication.



Corollary 6.1.1
Let a N-TS (X,T) be a T} space. Then for arbitrarya = b € X, a ¢ [{p}]V* ¢ and
b ¢ [{a}]Nu—cl_

Proposition 6.1.2
For every GTS (X, T), which is T,, the N-TS (X, T \ @) is TY.
Proof: By theorem 1.6.15, if (X, T) isa GTS then (X, T \ 0) is a N-TS.

Proposition 6.1.3
For every GTS (X, T), which is T,, the N-TS (X, 7 \ X) is TY.
Proof: By theorem 1.6.16, if (X, 7") isa GTS then (X, 7 \ X) isa N-TS.

Remark 6.1.1

Propositions 6.1.2 and 6.1.3 show that a T} space can be deduced from every T, space.

Proposition 6.1.4

If a one-one, onto, and N-O mapping f exist between two N-TSs (X, 7,) and (y:ry)
and if (X, ;) is T{' then the space (Y, 7, ) isalso a T¢'.

Proof:

When (X,T,) is T¥ and fis a one-one, N-O mapping, let us assume two distinct
pointsy; # y, € Y. Now, since f is onto, there will be members x; # x, € X so that
f(x) =y, and f(x,) = y,. Again, since (X,7,) is a T space, there is a g € T,
which contains one of x; or x, only and not the other. If x; € g then f(x;) € f($) €
T, since f is a N-O map. Thus, y; € f(%) €T, which shows that f() €T,
contains y; but not y, and hence the space (’gTy) is also T since the points y; and y,

are distinct and moreover arbitrary.

Definition 6.1.2
A N-TS (X, 7) will be called as Nu-T; (T} in short) if for each arbitrary pair of points
p # q in X there exists P,Q € T which satisfyp e P\ Q@ and, q € 9 \ P.

Proposition 6.1.5
If the singleton subsets of a N-TS (X, T") are N-C then the N-TS will be a TN space.
Proof:



For two arbitrary points: x, y in X, if it is assumed that the singleton {x} = A S X, is a
N-CS, which means cA € T with x & cA but y € cA. Analogously, c(B ={y}) €T
with y € ¢B but x € ¢B. Hence, if we assume: P = ¢B and Q = cA, then the space

(X, 7) will satisfy the condition for being a T}V space if the singleton subsets are closed.

Remark 6.1.2

The converse of proposition 6.1.5 is however not true and can be observed from the
following example: Let wus take the sett X ={1,2345} , and T =
{0,{1},{1,2},{1,5},{2,3},{3,4},{4,5}}, then (X, T) is a N-TS. For any pair of distinct
points, the condition for T} is satisfied but none of the singleton subsets of X are N-C.
However, as seen in the proposition 6.1.5, when the singletons are closed then the space

isa T space.

Proposition 6.1.6

If a one-one, onto, and N-O mapping f exists between two N-TSs (X, 7,) and (yf];,)
and if (X, 7,) is T then (Y, T;) is also a T} space.

Proof:

When (X, T,) is T{Vand f is a one-one and N-O mapping, let us assume two distinct
points q; # q, € Y. Now, since f is onto, there will be distinct members p,p, € X
that satisfy f(p;) = q; and f(p,) = q,. Again, (X, T,) being a T} space, there are
P,Q € T, which satisfy m € P\ Q and, n € Q@ \ P where m and n are some random
points in the space. Further f being a N-O map, f(Q), f(Q) €7, and as such, we

haveq, = f(p1) € fF(P)\ f(Q)and g, = f(p2) € f(Q) \ f(P) thereby showing that
(‘y,ﬂg,) is also a T} space, the points g, and g, being distinct and arbitrary.

Proposition 6.1.7

Every sub-space of a TN space is also a T} space.

Proof:

Let us assume that the N-TS (X, 7;) is T{¥ and say, (Y, 7, ) is a sub-space of the space
(X,T,) and say, y, # y, are two arbitrary points in Y. Then Y being a sub-space of X,
S0 y,, y, Will be arbitrary points in X and by virtue of being a T}¥ space there will be

two N-OSs g, , §,,, in T, so that y; € $,, \ §#,, and y, € 9, \ £, . Now, in the sub-



space Y we will have N-OSs ¢, = ¢, NY and f, = $,, N Y so that y; € o, \ £

and y, € g, \ §#, and as such the sub-space (yﬂ;) becomes a T} space.

Proposition 6.1.8

Every T} space is also a T{ space.

Proof:

Assume that a N-TS (X, T) is T, then for arbitrary set of two unequal points p, q there
are P,Q € T that satisfy p € PncQ and, g € Q N cP and this means if p € P,q & P
andif g € Q,p & Q. Hence (X, T) is TY.

Proposition 6.1.9
For every T; GTS (X, T), the N-TS (X, T \ @) is T},
Proof: By theorem 1.6.15, if (X,7) isa GTS then (X, T \ @) is a N-TS.

Proposition 6.1.10
For every T; GTS (X, T), the N-TS (X, T \ X) is T}.
Proof: By theorem 1.6.16, if (X, 7") isa GTS then (X, 7 \ X) isa N-TS.

Definition 6.1.3
A N-TS (X, 7) will be called a Nu-T, space (T2 in short) if for an arbitrary set of two
unequal points m and n there exist P,Q € T satisfyingm e P,ne€ Qand P n Q = Q.

Proposition 6.1.11
For every T, GTS (X,T), the N-TS (XC,T \ @) is TY".
Proof: By theorem 1.6.15, if (X,T) isa GTS then (X, T \ @) is a N-TS.

Proposition 6.1.12
For every T, GTS (X, T), the N-TS (X, T\ X) is TY.
Proof: By theorem 1.6.16, if (X,T) isa GTS then (X, T \ X) isa N-TS.

Proposition 6.1.13

Every sub-space of a T space is also a T space.

Proof:

Let us assume that the N-TS (X, 7) is T4’ and let (Y, ;) be a sub-space of (X, J;) and

say, y; # y, are two random points in Y. Then Y being a subspace of X', so y;,y,



happens to be random points in X and by virtue of being a T space there will be two
N-OSs ., §,, in T, so that so that y, € g, , v, € §,, With o, N g, = @. Now, in
the sub-space Y we will have N-OSs g, = g, N Y and g, = §,, N Y sothaty, € o,
and y, € g, and §, N g, = @. Thus, the sub-space (Y, T, ) is also a T space.

Proposition 6.1.14

Every T space is also a TN space.

Proof:

Let the N-TS (X, T) be a T space, then for x = y € X there exist L, M € T'so that
x€L,yeMand LNM = @. The conditions LNM =@andx € Lresults iny ¢ L
and further y € M with LN M = @ results in x € M and hence the space (X,T,)

which is a Y space is also a T} space.

Proposition 6.1.15

In a TV space, the intersection of all N-C Nu-nhds of any point in the space is
necessarily a singleton.

Proof:

Let the N-TS (X, T) be T, then for m # n € X there are &, F € T that satisfy m € M,
neNandMnNN=¢. NowmeMand M NN =0=>meM S c(N). Thus
c(V) is a N-C Nu-nhd of the point m and n € c(V"). Thus, the point n will not belong
to the intersection of the N-C Nu-nhds of m and since the point n happens to be
arbitrary, the intersection in context will only consist of the single point m or the

singleton {m}.

Proposition 6.1.16

If a one-one, onto, N-O and Nu-continuous mapping f exists between two N-TSs (X, T;.)
and (Y,7,) and if (X, 7,) is T4 then the space (Y, 7;) is also T2'.

Proof:

Let (X, 7;) be TY¥ and f be a one-one and N-O mapping of (X, 7;) onto (Y, 7;,), let us
assume two distinct points y; # y, € Y. Now, since f is onto, there will be elements
X, # X, € X so that f(x;) =y, and f(x,) = y,. Again, since (X,7,) is a TY' space,
there are Oy, 0,, € 7 so that x € O, and, y € O,, and O, N 0,, = @. Also, since f is N-O

so there exist f(0Oy),f(0,) €T, so that y; = f(x;) € f(0r), ¥ = f(x3) € f(0,)



and £(0,) N £(0,) = £(0, N 0,) = f(®) = @, since f is one-one and onto. Hence the
space (Y, 7, ) is T2,

Proposition 6.1.17

If a one-one, onto, and Nu-continuous mapping f exists between two N-TSs (X, 7)) and
(Y,7;,) and if (Y,T;) is T then the space (X,T;) is also T4.

Proof:

Assume x; # x, € X then since f is one-one, so x; # x, = f(x;) # f(x;). Suppose
that f(x;) =y, and f(x,) =y, or, x; = f~1(y;) and x, = f1(y,).

Then for y; # y, € Y and since (Y, 7,) is a T3’ space, we have Q;,Q, € T, so that
y1 €Qiandy, € Q;and Q1 N Q; = @.

Again, since f is Nu-continuous £ ~1(Q,), f~*(Q,) € T, so that we have:

y1 €Q; = fY(yy) € f71(Q,) which in turn implies x; € f~1(Q,). Similarly, we
have: v, € Q, = f~1(y,) € f~1(Q,) which in turn implies x, € f~1(Q,) and
moreover, we have: f~1(Q) n f~1(Q,) = f71(Q, N Qy) = f~1(®) = 0.

Thus, for two arbitrary points x; # x, € X, we have f~1(Q,),f1(Q,) € T so that
x; € f71(Qp) and x; € f71(Q2) and £71(Q) N f71(Q2) = @.

Hence the space (X, T;) is also T,

Definition 6.1.4

A N-TS (X, T) will be called a Nu-regular space if corresponding to any N-CS ¢ and
x & C there are 0., 0, € T sothat: ¢ € 0., x € 0, and O, N O, = @. If the Nu-regular
N-TS (X, T) is also T{" then this N-TS is called a Nu-T; space (T2 in short). That is, a

TY space is a Nu-regular space satisfying the conditions for a T¥space.

Proposition 6.1.18
For every regular GTS (X, T), the N-TS (X, T \ ) is Nu-regular.
Proof: By theorem 1.6.15, if (XC,T") isa GTS then (X, T \ ) is a N-TS.

Proposition 6.1.19
For every regular GTS (X, T), the N-TS (X, T \ X) is Nu-regular.
Proof: By theorem 1.6.16, if (X,T) isa GTS then (X, T \ X) isa N-TS.



Proposition 6.1.20
For a Nu-regular N-TS (X, T), for arbitrary x € X and random Nu-nhd V" of x, there
will be a Nu-nhd Q of x so that QN%~¢t c V.
Proof:
Let the space be Nu-regular and assume V" to be a Nu-nhd of x, then there will be a N-
OS O so that x € O € V. Now, cO is N-CS and x & cO so by Nu-regularity of the
space, we have: P,Q € T that satisfies cO € P, x € Q and P N Q = @ that leads to the
fact that Q@ € cP.
Also, Q € cP = QNu~cl c (cP)Nu=<l py proposition 2.3.3 (iii)

= gNu=cl ¢ ¢P, since cP is N-C and by proposition 2.3.2.
Also, cO € P = ¢P € 0 € N and thus: gV¥=¢t c .

Remark 6.1.3

The converse of proposition 6.1.20 is not always true in a N-TS as it would be in a GTS.
This is because, if we assume the condition to be true in the converse part and assume C
to be some N-CS so that x ¢ C then x € ¢C, with ¢C being a N-OS and so by the
assumed condition there will exist a N-OS O so that x € O and OV¥~¢! € ¢€ which
gives C € c(ON¥=<h), But, since in a N-TS, ON¥~< will not be always N-CS [remark
2.3.1 and remark 2.3.2]. Thus, c(OM*~<!) is not always a N-OS and because of this the
Nu-regularity of the space fails in a N-TS.

Proposition 6.1.21

Every T2 space is also a T space.

Proof:

Let the N-TS (X, T) be T¥, then it is both TN and Nu-regular. Thus, for x; # x, € X,
by virtue of being TN there are N-OSs 0, and 0, so that x; € O, \ O, and x, € O, \ 0;.
Now, x; € O, means x; & c(0,) and c(0,) is a N-CS and hence by virtue of being Nu-
regular there will be N-OSs 2 and Q that satisfy x; € P, c(0,) €S Qand P n Q = Q.
Now, x, €0, \0; = x, € 01 = x5, €Ec(0;) €9 = x, € Q.

Thus, for arbitrary x; # x, € X', we have N-OSs P and Q satisfying x; € P, x, € Q
and P N Q = @. Hence, the space (X, T") which is TY, is also T2'.



Proposition 6.1.22

If a one-one, onto, N-O and weakly Nu-continuous mapping f exists between two N-TSs
(X,7,) and (Y,7;) and if (X,T;) is Nu-regular then the space (Y,7;) is also Nu-
regular.

Proof:

We assume C to be N-C with respect to 7;, and let g to be a point in Y so that g & C.
Now, since f is one-one and onto, 3p € X so that f(p) =g f (@) =p.
Moreover, since f is weakly Nu-continuous, by proposition 5.1.4, f~1(€) is N-C with
respect to 7.

Also,ggéC=>f1(@Qef(C)=p¢&f 0.

Thus, f~1(€) isN-Cin X and p € X such thatp & f~1(C).

Hence, by the Nu-regularity of the space X, we have N-OSs P and Q that satisfy p € P,
f/i(eycQandP nQ = @.

Now,p € P = f(p) € f(P)=q € f(P)

AndfH () Q= ff ) S f@=CESf(D

AndPNQ=0=f(PnNnQ) =f(® =f(P)nf(Q)=0,since f is one-one.

Also f being N-O so f(P) and f(Q) are N-O with respect to 7,,. Thus, for an arbitrary
member y in Y and a N-CS Cwith respect to 7, so thaty ¢ C, we have N-OSs
f(P)and f(Q) satisfyingy € f(P), C < f(Q)and f(P) n f(Q) = @ thereby showing
that the space (Y, 7;) is Nu-regular.

Proposition 6.1.23

Every sub-space (A, T4) of a Nu-regular space (X, T,), is Nu-regular.

Proof:

Let us assume that F be an arbitrary 7 ,-N-CS and y be an arbitrary point in A so that
y & F. Now, by proposition 2.5.1 (i) we have F*~" = F3*~ n A where Fy*~ is
the N-C of F in the space (X,T,). Also F being N-C with respect to 74, we have
F¥ = Fand sowe have: F = FY* N eA e, (1)

Now,y¢ F=>ye FRV I nA=>ye FRVasy e A.

Now, by proposition 2.5.1 (i) and (1) we have F¥*~<! to be N-C with respect to 7;, and

we have a point y & F¥* " and so by the Nu-regularity of the space (X,7;), we have



N-OSs G and H in T, so thaty € G, FR* ' c H and G N H = @. Now, y € A with
yeGayeGnAandFiv e s FAVInACHNA=FCSHNA, from
Q). Also, GNnA)NHNA)=GNH)NA=0NA=0. If weputgnA==,
and H N A = Q, then P and Q are N-OSs in T4 since G and H are N-O in7,. Thus,
for arbitrary N-CS F in A and an arbitrary point y ¢ F, we have y € P, F € Q and
P N Q = @ thereby showing that (A, T4) is Nu-regular.

Proposition 6.1.24

A sub-space (Y, T;) of a T3 space (X, 7;) is also T4

Proof:

A TY space is a T)Y space which is Nu-regular. By proposition 6.1.7 a sub-space of a
T} is a T} space and by proposition 6.1.23 a sub-space of a Nu-regular space is Nu-
regular. Thus, if (XC,7,) is TY then it is both T} and Nu-regular, thus by the
propositions 6.1.7 and 6.1.23, the sub-space (y f];,) of (X,T,) is also a T2 space.

Proposition 6.1.25
For every T; GTS (X, T), the N-TS (XC, T\ ©) is T.
Proof: By theorem 1.6.15, if (X,T) isa GTS then (X,T \ @) is a N-TS.

Proposition 6.1.26
For every T; GTS (X, T), the N-TS (X, T\ X) is T,
Proof: By theorem 1.6.16, if (X,T) isa GTS then (X, T \ X) isa N-TS.

Definition 6.1.5
A N-TS (X, T) will be termed a Nu-normal space if corresponding to a pair of disjoint
N-CSs € and D, there exists O;, 0 € 7 so that: C € O.,D € Op and O, N Op = @. If

the space (X, T) is also T} then the space is called a Nu-T, space (T in short).

Proposition 6.1.27

Let a N-TS (X, T) be Nu-normal. Then for any N-CS F and a N-OS G which contain F,
there exists a N-OS V so that F € V and VN%~¢l c g.

Proof:

Let us first assume that the space (X, T) be Nu-normal and F is some N-CS and G is
some N-OS in 7" such that F < G. Then ¢G is N-C and F N ¢G = @. Thus, F and cg are



disjoint N-CSs and hence by the property of Nu-normality of the space there will be two
N-OSs U and V that satisfy cG € U, F S V,and U NV = Q.

Now, U NV =0 =7V C cU, with cU being N-C.

AlsoV € cU = PVu=c c (cU)N¥ ¢ = U, cU being N-C.

Also cG € U = ¢U < G and hence VV¥=¢t c g,

Thus, we get F € V and PV4=¢ c g,

Proposition 6.1.28

If (Y, 7;) is Nu-homomorphic to a Nu-normal N-TS (X,7,), then (Y, 7;,) is also Nu-
normal.

Proof:

We assume F and G to be two random disjoint N-CSs with respect to 7;, and let i be a
Nu-homomorphism between (X, 7;) and (Y, 7;). Then  is a weakly Nu-continuous
map and as such y~1(F) and ¥ ~1(G) are N-C with respect to 7., by proposition 5.1.4.
Also, y Y (F)n v~ 1(G) = vy H(F nG) = Yp~1(@) = @, sinceyis one-one.

Thus, Y~ 1(F) and y~1(G) are disjoint N-CSs with respect to 7, and since the space
(X, T,) is Nu-normal, so there will be N-OSs P and Q in T, so that y~1(F) € P and
PG cgandPnQ =0.

Now, Yy Y (F)cP =2y Y (F) cyY(P)=>F cy(P) and similarly G € y(Q) .
Also, ¥ being N-O, by proposition 5.1.17, the sets 1(P) and (Q) are N-O in T;, such
that Y(P) N Y(Q) = Y(P N Q) = P, since Y is one-one. Thus, if we put Y(P) =M
and Y(Q) = N, then M and V are N-O inT,and F S M,GES N and M NV = @.

This leads to the conclusion that (Y, 7;,) is also Nu-normal.

Proposition 6.1.29

Every T space is also a T2 space.

Proof:

If the N-TS (X, T) is T}, then it is ¥ and Nu-normal. Thus, it would be sufficient to
show that (X, T") is Nu-regular.

Now, since X is Nu-normal, so for two arbitrary disjoint N-CSs F and G, there exist N-
OSs P and Q satisfying F € P,G< Qand P n Q = Q.
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Now, if we assume the N-CS F in X, which was chosen arbitrarily and a random point
xinGgso thatx € F as F NG = @ then the N-OSs P and Q that satisfy x € Q,F € P
and P N Q = @. Hence, (X, T) is also a T2 space.

6.2 Separation Axioms in Anti-Topological Spaces

Definition 6.2.1

An A-TS (X, 7) will be an anti-T, space (T4 in short) if for random elements x # y
there is a Q € T for which, whenever x € Q,y & Q or, whenever y € 9, x € Q. In
other words, for any set of two unequal points in the space there will be an anti-open set

that enclose one of the points excluding the other.

Proposition 6.2.1

Let an A-TS (X, T) be an T§ space then for arbitrary distinct points x,y in X,
[{x}]Anti—cl N [{y}]Anti—cl = 0.

Proof:

Assume X to be T¢ and x # y be arbitrary elements in X, then there will be £ € T so
that whenever x € L,y & L or, whenevery € L, x & L.

Now, whenever x € L, {x} € £ and whenevery & L, {y} ¢ L

Again, whenever {x} € L, [{x}]4™ti=¢t c £A™ti=¢cl by proposition 4.3.3 (iii)

A|SO, {}/} ¢ L= [{y}]Anti—cl ¢ LAnti—cl. ThUS, [{x}]Anti—cl N [{y}]Anti—cl — @

Corollary 6.2.1
Let an A-TS (X, T) be an T4 space. Then for arbitrary distinct points p,q in X, p &

[{g}]A™~<L and q ¢ [{p}]Anti=<t.

Proposition 6.2.2
For every T§' A-TS (X, T), the N-TS (X, T U @) is TY.
Proof: By theorem 1.6.18, if (X,T) is an A-TS, then (X,7 U @) is a N-TS.

Proposition 6.2.3
For every T A-TS (X, T), the N-TS (X, T U X) is TY".
Proof: By theorem 1.6.19, if (X, 7) is an A-TS, then (X, 7 U X) isa N-TS

11



Remark 6.2.1
Propositions 6.2.2 and 6.2.3 shows that a T} space can be obtained from every T

space. And this follows from remark 1.6.11 of chapter 1.

Proposition 6.2.4

If a one-one, onto, and A-O mapping f exists between two A-TSs (X, 7,) and (yﬂg,)
and if (X, 7,) is T¢" then the space (Y, 7;) is also Tg'.

Proof:

When (X, T,) is T¢ and f is a one-one A-O mapping, let us assume two distinct points
Y1 # ¥, € Y. Now, since f is onto, there will be elements x; # x, € X so that f(x;) =
y, and f(x,) = y,. Again, since (X,T,) is an T4 space, there is a R € T, which
contains one of x; or x, only and not the other. If x; € R then f(x;) € f(P) €T,

since f is A-O. Thus, y; € f(R) € T,, thereby meaning that f(R) € 7,, contains y, but

not y, and hence the space (yTy) is also T¢' since the points y; and y, are arbitrary.

Definition 6.2.2
An A-TS (X, 7) will be termed as anti-T; (T{ in short) if for each arbitrary pair of
points p # q in X there exist X, L € T satisfyingp € XK \ Land, q € L\ K.

Proposition 6.2.5

If the singleton subsets of an A-TS (X, T) are A-C then the A-TS will be a T{* space.
Proof:

For two random points: p, g in X, if we first assume the singleton {p} = P < X is A-C,
then ¢ € T with p € cP but q € cP. Analogously, c({q} = Q) € T with q & cQ but
p € cQ. Hence, if we assume: M = cQ and V' = cP, then the space (X, T) will satisfy

the condition for being a T;* space if the singleton subsets are A-C.

Remark 6.2.2

The converse of proposition 6.2.5 is however not true and can be observed from the
following example: Let us assume X =1{1,2,3,45} , and the AT T =
{6,{1,2,3},{1,2,4},{1,2,5},{1,3,4},{1,3,5},{2,3,4},{2,3,5}, {3,4,5}, then (X, T) is an A-

TS. For any pair of distinct points, the condition for T/ is satisfied but none of the
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singleton subsets of X are A-C. However, as seen in the proposition 6.2.5, when the

singletons are closed then the space is T;*.

Proposition 6.2.6

If a one-one, onto, and A-O mapping f exists between two A-TSs (X, 7,) and (yﬂ;,)
and if (X, 7;) is T{* then (Y, ;) is also T{.

Proof:

Let (X,7,) be T{and f be a one-one, onto and A-O mapping. Let us assume two
distinct points q;,q, € Y. Now, since f is onto, there will be elements p; #p, € X
satisfying f(p,) = q; and f(p,) = q,. Again, (X,T,) being a T;'space, there exist
P,Q € T, satisfyingp € P \ Q and, g € Q \ P with arbitrary points p, q in X. Further,
f being A-O f(Q),f(Q) €7, and as such, we have q; = f(p;) € f(P) \ f(Q) and
q; = f(p2) € f(Q) \ f(P) thereby showing that (Y, 7; ) is also a T{* space, the points
q. and g, being distinct and arbitrary.

Proposition 6.2.7

Every sub-space of an T;* space is an T; space.

Proof:

Let us assume that the A-TS (X, T,) be T and let (A, T;) be a sub-space of the space
(X,T7,). Let y; # y, are two arbitrary points in A. Since A is a sub-space of X, so
y1,y» Will be arbitrary points in X and by virtue of being a T space there will be two
A-OSs 0, ,Q,, inT, so that so that y, € 9, \ Q,, andy, € 9,  \ @, . Now, in the
sub-space A we will have A-OSs Q; =Q, NAand @, = Q, NAso thaty,; € Q; \

0, and y, € Q, \ 9, and as such the sub-space (A, T;) becomes a T space.

Proposition 6.2.8

Every T/ space is also an T¢' space.

Proof:

When (X, T) is T, then for arbitrary set of unequal points p, q there exist X,L € T
that satisfy p € K ncL and, g € £L N cK which means that whenever p € K,q ¢ K
and whenever q € L,p & L. Hence (X, T) is T
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Proposition 6.2.9
For every T{* A-TS (X, T), the N-TS (X, T U @) is T}.
Proof: By theorem 1.6.18, if (X,T) is an A-TS then (X,T U @) is a N-TS.

Proposition 6.2.10
For every T A-TS (X, T), the N-TS (X, T U X) is T},
Proof: By theorem 1.6.19, if (X,T) is an A-TS then (X,T U X)) is a N-TS.

Definition 6.2.3

An A-TS (X, 7) will be called an anti-T, space (T, in short) whenever for arbitrary
pair of unequal points p and q in X there exist X, L € T such thatp € K, q € £ and
KNnL=09.

Proposition 6.2.11
For every T4 A-TS (X, T), the N-TS (X, T U @) is TY.
Proof: By theorem 1.6.18.

Proposition 6.2.12
For every T4 ATS (X, T), the N-TS (X, T U X) is TY.
Proof: By theorem 1.6.19.

Proposition 6.2.13

Every sub-space of an T4 space is an T space.

Proof:

Let us assume that the A-TS (X, T,) is T5! and let (A, T4) is a sub-space of the space
(X,T,). Let y; # y, are two arbitrary points in A. Then A being a subspace of X, so
y1, ¥ Will be arbitrary points in X also and by virtue of being a T4 space there will be
two A-OSs P, , P, in T so thaty,; € R, , y, € P, with P, NP, =@. Now, in the
sub-space A we will have A-OSs P, = P, N A and P, = P,, N A so that y; € P; and

y, € P, and P; N P, = @. Thus, the sub-space (A, T ) is an T4 space.

Proposition 6.2.14
Every T4 space is an T;* space.

Proof:
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Let the A-TS (X, T) be T, then if p = q € X there exist 9, R € Tsothatp € Q,q E R
and 9 N R = @. The conditionsQ N R = @ and p € Q results in g ¢ Q and further q €
R with Q N R = @ results in p & R and hence the space (X, T) is also a T{* space.

Proposition 6.2.15

If a one-one, onto, A-O and anti-continuous mapping f exists between two A-TSs
(X,7,) and (Y, 7)) and if (X, 7)) is T5" then the space (Y, 7;) is also T5.

Proof:

Let (X,7,) be T5* and f be a one-one and A-O mapping of (X, T,) onto ('yf];,) Let us
assume two distinct points y;,y, € Y. Now, since f is onto, there will exist elements
X, # X, € X so that f(x;) = y; and f(x,) = y,. Again, since (X,T,) is a T space,
there exist Oy, 0,, € T, so that x € O, and, y € 0,, and O, N O, = @. Further, f being
A-O £(0,),f(0y) € T, and as such, we have y; = f(x;) € f(O,) and y, = f(x;) €
f(0,) and f(0) nf(0)) =F(0,n0O,) = f(®) =@, since f is one-one and onto.
Hence the space (Y, ;) is T4".

Proposition 6.2.16

If a one-one, onto, and anti-continuous mapping f exists between two A-TSs (X, T,)
and (Y,7,) and if (Y, ;) is T4 then the space (X, 7) is also T3

Proof:

Assume x; # x, € X and since f is one-one, SO x; # x, means f(x;) # f(x,) .
Suppose that £(x;) = y; and f(x,) = y,0r, x; = £~ (yp)and x, = £~ (7).

Then y; # y, € Y and now since (y:ry) is a T4 space, we have Q;,Q, € T, so that
y1 €EQ;andy, € Q,and Q; N Q, = Q.

Again, since f is anti-continuous f~1(Q,), f~1(Q,) € T, so that:

y1€Q:1=>f'(y) € FHQ) = x; € f7(QD.

Similarly, we have: y, € Q, = f~1(y,) € f71(Q,) = x, € f~1(Q,) and moreover, we
have: f~1(Q) N f1(Qy) = f7'(Q:n Q) =f~1(®) =@ . Thus, for two arbitrary
points x; # x, € X, we have f~1(Q,),f *(Q,) € T, so that x; € f~*(Q,) and x, €
F7HQ2) and f71(Q1) N f71(Q,) = @. Hence the space (X, Ty) is also T'.
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Definition 6.2.4

An A-TS (X, T) will be called an anti-regular space if corresponding to all A-CS € and
x & C there exist 0,0, € T so that: c< O0,,x€ 0, and O. N O, = @. If the A-TS
(X, T) is also T{! then the A-TS is called an anti-T; space (T3! in short).

Proposition 6.2.17
For every anti-regular A-TS (X, T), the N-TS (X, T U @) is Nu-regular.
Proof: By theorem 1.6.18.

Proposition 6.2.18
For every anti-regular A-TS (X, T), the N-TS (X, T U X) is Nu-regular.
Proof: By theorem 1.6.19.

Proposition 6.2.19

Every sub-space of an anti-regular space is anti-regular.

Proof:

Assume (A, T,) to be a sub-space of an anti-regular A-TS (X,T) and let P be a
random T.4-A-CS and y be an arbitrary point in A so that y € P. Now, by proposition
45.1 (i) we have P~ = P4t n A where Py~ is the anti-closure of Pin
the space (X, T;).

Also P being A-C in T, PA™ ¢l = P and so we have: P = Particln A4 ... (1)
Now,y g P =y ¢ Paticln A = y¢g Pticlasy € A.

Now, by proposition 4.5.1 (i) and (1) we have P£™~<! to be A-C with respect to 7, and
we have a point y ¢ P£™~<! and so by the anti-regularity of the space (X, 7}), we have
A-0OSsQ and R in T, so that y € Q,Pe™ ! c Rand Q N R = @. Now, y € A with
YyEQ=>yEQNA and Pl R P INACRNASPCRNA
from (1). Also, QN A)NRNA)=@QNR)NA=0NA = 0.

If we assignQ N A = MandR N A = IV, then M and V" are A-OSs in T4 since Q and
H are AO inT,. Thus, for random A-CS 2 in A and random pointy ¢ P, satisfying
yEM,P SN and M n N = @ thereby showing that (A, T ) is anti-regular.

Proposition 6.2.20
A sub-space (Y, ;) of a T4 space (X, 7;) is also T4.
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Proof:

An T3 space is an T{* space and is also anti-regular. By proposition 6.2.7 a sub-space of
an T{' is an T;{! space and by proposition 6.2.19 a sub-space of an anti-regular space is
anti-regular. Thus, if (X,T,) is T4 then it is both T{ and anti-regular, so by
propositions 6.2.7 and 6.2.19, the sub-space (y 7},) of (X, T,) is also an T4 space.

Proposition 6.2.21

Every T4 space is also an T4' space.

Proof:

If the A-TS (X, T) is T4, then it is T{ and anti-regular. For x; # x, € X we have by
virtue of T space there exist A-OSs 0, and O, so that x; € O; \ 0, and x, € 0, \ 0.
Now, x; € O, means x; & c(0,) and c(0;) is a A-CS and hence by virtue of anti-
regularity there exist A-OSs P and Q@ so that x; € P, c(0;) S Qand P N Q = Q.
Now, x, €0, \ 0y = x, € 0y = x, €Ec(01) € Q = x, € Q.

Thus, for arbitrary x; # x, € X, we have A-OSs P and Q satisfying x; € P, x, € Q and
P N Q = @ which shows that the space (X, T") is also T;.

Proposition 6.2.22
For every T A-TS (X, T), the N-TS (X, T U @) is T,
Proof: By theorem 1.6.18.

Proposition 6.2.23
For every T{! A-TS (X, T), the N-TS (X, T U X) is TY.
Proof: By theorem 1.6.19.

Definition 6.2.5
An A-TS (X,T) will be called an anti-normal space if corresponding to a pair of
disjoint A-CSs C and D, there exist O.,0p € T so that: C € O, D € Op and O N

Op = 0. If the A-TS is also T{* then it is called an anti-T, space (T3 in short).

Proposition 6.2.24
For every anti-normal A-TS (X, T), the N-TS (X, T U @) is Nu-normal.
Proof: By theorem 1.6.18.
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Proposition 6.2.25
For every anti-normal ATS (X, T), the N-TS (X, T U X) is Nu-normal.
Proof: By theorem 1.6.19.

Proposition 6.2.26

If an A-TS (X,T) is anti-normal then for arbitrary A-CS F and an A-OS G which
contain F, there exists an A-OS V so that F € V and pAnti=ct ¢ g,

Proof:

Let us first assume that the space (X, T) is anti-normal with F as some A-CS and G as
some A-OS inT so that F € G. Then ¢G is A-CS and F N cG = @. Thus, F and cg are
disjoint A-CSs and hence by the property of anti-normality of the space there will be
two A-OSs K and £ satisfyingcG € KX, F € Land KX N L = Q.

Now, K N L =0 = L € cK, with ¢X being A-CS.

Also, L C cK = LAM=cl ¢ (c0)Anti=cl = K¢, cK being A-CS, proposition 4.3.2.
Also, cG € K = cK € G and hence LA™i=¢l € g,

Thus, we get F € £ and £4™t~¢l ¢ g,

Proposition 6.2.27

Every T/ space is necessarily a T4 space.

Proof:

Let the A-TS (X, T) be T4, then it is T and anti-normal. Thus, it would be sufficient to
show that (X, T) is anti-regular. Now, since X is anti-normal, so for two random
disjoint A-CSs F and G, we have A-OSs K, L satisfying F C K, G < Land KX N L = @.
Now, if we can assume the same A-CS F in X', which was also arbitrarily chosen and a
random point x in G so that x ¢ F as F N G = @ then we have the A-OSs K and £ that
satisfy x € Land F € K and K n £ = @ thereby showing that (X, T) is also T4

Proposition 6.2.28
For every T/ ATS (X, T), the N-TS (X, T U @) is T.N.
Proof: By theorem 1.6.18.

Proposition 6.2.29
For every T# ATS (XC,T), the N-TS (X, T U X) is T} .
Proof: By theorem 1.6.19.
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