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CHAPTER 6 

Separation Axioms in Neutro-Topological and Anti-

Topological Spaces 

 

In this chapter some separation axioms are studied in N-TSs as well as in A-TSs and 

various hereditary properties that are generally true in topological spaces are observed 

minutely and various comparisons are made among the various spaces that have been 

introduced in N-TSs and A-TSs. Many of the hereditary and other relevant properties 

are found to follow in the N-TS and A-TS with certain exceptions, the reasons for which 

have been given.     

6.1 Separation Axioms in Neutro-Topological Spaces 

Definition 6.1.1 

A N-TS (𝒳, 𝒯) will be called a Nu-𝑇0 space (𝑇0
𝑁 in short) if for arbitrary elements 𝑚 ≠

𝑛 there exists 𝒬 ∈ 𝒯 for which, if 𝑚 ∈ 𝒬, 𝑛 ∉ 𝒬 or, if 𝑛 ∈ 𝒬, 𝑚 ∉ 𝒬. In other words, for 

any set of two unequal points in the space there will exist a N-OS that contains one of 

the points but not the other. 

Proposition 6.1.1 

Let a N-TS (𝒳, 𝒯)  be a 𝑇0
𝑁  space. Then for distinct points: 𝑥, 𝑦 ∈ 𝒳 , we have: 

[{𝑥}]𝑁𝑢−𝑐𝑙 ∩ [{𝑦}]𝑁𝑢−𝑐𝑙 = ∅. 

Proof: 

Let (𝒳, 𝒯) be 𝑇0
𝑁  and 𝑥 ≠ 𝑦 be arbitrary elements in 𝒳, then there will be ℘ ∈ 𝒯  so 

that whenever 𝑥 ∈ ℘, 𝑦 ∉ ℘ or, whenever 𝑦 ∈ ℘, 𝑥 ∉ ℘ .  

Now, whenever 𝑥 ∈ ℘, {𝑥} ⊆ ℘ and whenever 𝑦 ∉ ℘, {𝑦} ⊄ ℘ 

Again, whenever {𝑥} ⊆ ℘, [{𝑥}]𝑁𝑢−𝑐𝑙 ⊆ ℘𝑁𝑢−𝑐𝑙 by proposition 2.3.3 (iii) 

Also, {𝑦} ⊄ ℘ ⇒ [{𝑦}]𝑁𝑢−𝑐𝑙 ⊄ ℘𝑁𝑢−𝑐𝑙.  

Thus, [{𝑥}]𝑁𝑢−𝑐𝑙 ∩ [{𝑦}]𝑁𝑢−𝑐𝑙 = ∅.  

____________________________________ 

The neutro-topology part of this chapter has been communicated to an international journal for publication. 
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Corollary 6.1.1 

Let a N-TS (𝒳, 𝒯) be a 𝑇0
𝑁  space. Then for arbitrary 𝑎 ≠ 𝑏 ∈ 𝒳, 𝑎 ∉ [{𝑏}]𝑁𝑢−𝑐𝑙  and 

𝑏 ∉ [{𝑎}]𝑁𝑢−𝑐𝑙. 

Proposition 6.1.2 

For every GTS (𝒳, 𝒯), which is 𝑇0, the N-TS (𝒳, 𝒯 ∖ ∅) is 𝑇0
𝑁.  

Proof: By theorem 1.6.15, if (𝒳, 𝒯) is a GTS then (𝒳, 𝒯 ∖ ∅) is a N-TS. 

Proposition 6.1.3 

For every GTS (𝒳, 𝒯), which is 𝑇0, the N-TS (𝒳, 𝒯 ∖ 𝒳) is 𝑇0
𝑁.  

Proof: By theorem 1.6.16, if (𝒳, 𝒯) is a GTS then (𝒳, 𝒯 ∖ 𝒳) is a N-TS. 

Remark 6.1.1 

Propositions 6.1.2 and 6.1.3 show that a 𝑇0
𝑁 space can be deduced from every 𝑇0 space.  

Proposition 6.1.4 

If a one-one, onto, and N-O mapping 𝑓 exist between two N-TSs (𝒳, 𝒯𝑥) and (𝒴, 𝒯𝑦) 

and if (𝒳, 𝒯𝑥) is 𝑇0
𝑁 then the space (𝒴, 𝒯𝑦) is also a 𝑇0

𝑁.   

Proof: 

When (𝒳, 𝒯𝑥)  is 𝑇0
𝑁 and 𝑓 is a one-one, N-O mapping, let us assume two distinct 

points𝑦1 ≠ 𝑦2 ∈ 𝒴. Now, since 𝑓 is onto, there will be members 𝑥1 ≠ 𝑥2 ∈ 𝒳 so that 

𝑓(𝑥1) = 𝑦1  and 𝑓(𝑥2) = 𝑦2 . Again, since (𝒳, 𝒯𝑥)  is a 𝑇0
𝑁  space, there is a ℘ ∈ 𝒯𝑥 

which contains one of 𝑥1 or 𝑥2 only and not the other. If 𝑥1 ∈ ℘ then 𝑓(𝑥1) ∈ 𝑓(℘) ∈

𝒯𝑦  since 𝑓  is a N-O map. Thus, 𝑦1 ∈ 𝑓(℘) ∈ 𝒯𝑦   which shows that 𝑓(℘) ∈ 𝒯𝑦 

contains 𝑦1 but not 𝑦2 and hence the space (𝒴, 𝒯𝑦) is also 𝑇0
𝑁 since the points 𝑦1 and 𝑦2 

are distinct and moreover arbitrary. 

Definition 6.1.2 

A N-TS (𝒳, 𝒯) will be called as Nu-𝑇1 (𝑇1
𝑁 in short) if for each arbitrary pair of points 

𝑝 ≠ 𝑞 in 𝒳 there exists 𝒫, 𝒬 ∈ 𝒯 which satisfy 𝑝 ∈ 𝒫 ∖ 𝒬 and, 𝑞 ∈ 𝒬 ∖ 𝒫.  

Proposition 6.1.5 

If the singleton subsets of a N-TS (𝒳, 𝒯) are N-C then the N-TS will be a 𝑇1
𝑁 space. 

Proof: 
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For two arbitrary points: 𝑥, 𝑦 in 𝒳, if it is assumed that the singleton {𝑥} = 𝒜 ⊆ 𝒳, is a 

N-CS, which means 𝑐𝒜 ∈ 𝒯  with 𝑥 ∉ 𝑐𝒜  but 𝑦 ∈ 𝑐𝒜 . Analogously, 𝑐(ℬ = {𝑦}) ∈ 𝒯 

with 𝑦 ∉ 𝑐ℬ but 𝑥 ∈ 𝑐ℬ . Hence, if we assume: 𝒫 = 𝑐ℬ  and 𝒬 = 𝑐𝒜 , then the space 

(𝒳, 𝒯) will satisfy the condition for being a 𝑇1
𝑁 space if the singleton subsets are closed.   

Remark 6.1.2 

The converse of proposition 6.1.5 is however not true and can be observed from the 

following example: Let us take the set: 𝒳 = {1,2,3,4,5} , and  𝒯 =

{∅, {1}, {1,2}, {1,5}, {2,3}, {3,4}, {4,5}}, then (𝒳, 𝒯) is a N-TS. For any pair of distinct 

points, the condition for 𝑇1
𝑁 is satisfied but none of the singleton subsets of 𝒳 are N-C. 

However, as seen in the proposition 6.1.5, when the singletons are closed then the space 

is a 𝑇1
𝑁 space. 

Proposition 6.1.6 

If a one-one, onto, and N-O mapping 𝑓 exists between two N-TSs (𝒳, 𝒯𝑥) and (𝒴, 𝒯𝑦) 

and if (𝒳, 𝒯𝑥) is 𝑇1
𝑁 then (𝒴, 𝒯𝑦) is also a 𝑇1

𝑁 space.   

Proof: 

When (𝒳, 𝒯𝑥) is 𝑇1
𝑁and 𝑓 is a one-one and N-O mapping, let us assume two distinct 

points 𝑞1 ≠ 𝑞2 ∈ 𝒴. Now, since 𝑓 is onto, there will be distinct members 𝑝1, 𝑝2 ∈ 𝒳 

that satisfy 𝑓(𝑝1) = 𝑞1  and 𝑓(𝑝2) = 𝑞2 . Again, (𝒳, 𝒯𝑥)  being a 𝑇1
𝑁  space, there are 

𝒫, 𝒬 ∈ 𝒯𝑥  which satisfy 𝑚 ∈ 𝒫 ∖ 𝒬  and, 𝑛 ∈ 𝒬 ∖ 𝒫  where 𝑚  and 𝑛  are some random 

points in the space. Further 𝑓  being a N-O map, 𝑓(𝒬), 𝑓(𝒬) ∈ 𝒯𝑦  and as such, we 

have 𝑞1 = 𝑓(𝑝1) ∈ 𝑓(𝒫) ∖ 𝑓(𝒬) and 𝑞2 = 𝑓(𝑝2) ∈ 𝑓(𝒬) ∖ 𝑓(𝒫) thereby showing that 

(𝒴, 𝒯𝑦) is also a 𝑇1
𝑁 space, the points 𝑞1 and 𝑞2 being distinct and arbitrary.  

Proposition 6.1.7 

Every sub-space of a 𝑇1
𝑁 space is also a 𝑇1

𝑁 space.       

Proof: 

Let us assume that the N-TS (𝒳, 𝒯𝑥) is 𝑇1
𝑁 and say, (𝒴, 𝒯𝑦) is a sub-space of the space 

(𝒳, 𝒯𝑥) and say, 𝑦1 ≠ 𝑦2 are two arbitrary points in 𝒴. Then 𝒴 being a sub-space of 𝒳, 

so 𝑦1, 𝑦2 will be arbitrary points in 𝒳 and by virtue of being a 𝑇1
𝑁 space there will be 

two N-OSs ℘𝑦1
, ℘𝑦2

 in 𝒯𝑥 so that 𝑦1 ∈ ℘𝑦1
∖ ℘𝑦2

 and 𝑦2 ∈ ℘𝑦2
∖ ℘𝑦1

. Now, in the sub-
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space 𝒴 we will have N-OSs ℘1 = ℘𝑦1
∩ 𝒴 and ℘2 = ℘𝑦2

∩ 𝒴 so that 𝑦1 ∈ ℘1 ∖ ℘2 

and 𝑦2 ∈ ℘2 ∖ ℘1 and as such the sub-space (𝒴, 𝒯𝑦) becomes a 𝑇1
𝑁 space.       

Proposition 6.1.8 

Every 𝑇1
𝑁 space is also a 𝑇0

𝑁 space.       

Proof: 

Assume that a N-TS (𝒳, 𝒯) is 𝑇1
𝑁, then for arbitrary set of two unequal points 𝑝, 𝑞 there 

are 𝒫, 𝒬 ∈ 𝒯 that satisfy 𝑝 ∈ 𝒫 ∩ 𝑐𝒬 and, 𝑞 ∈ 𝒬 ∩ 𝑐𝒫 and this means if 𝑝 ∈ 𝒫, 𝑞 ∉ 𝒫 

and if 𝑞 ∈ 𝒬, 𝑝 ∉ 𝒬. Hence (𝒳, 𝒯) is 𝑇0
𝑁. 

Proposition 6.1.9 

For every 𝑇1 GTS (𝒳, 𝒯), the N-TS (𝒳, 𝒯 ∖ ∅) is 𝑇1
𝑁. 

Proof: By theorem 1.6.15, if (𝒳, 𝒯) is a GTS then (𝒳, 𝒯 ∖ ∅) is a N-TS.  

Proposition 6.1.10 

For every 𝑇1 GTS (𝒳, 𝒯), the N-TS (𝒳, 𝒯 ∖ 𝒳) is 𝑇1
𝑁. 

Proof: By theorem 1.6.16, if (𝒳, 𝒯) is a GTS then (𝒳, 𝒯 ∖ 𝒳) is a N-TS. 

Definition 6.1.3 

A N-TS (𝒳, 𝒯) will be called a Nu-𝑇2 space (𝑇2
𝑁 in short) if for an arbitrary set of two 

unequal points 𝑚 and 𝑛 there exist  𝒫, 𝒬 ∈ 𝒯 satisfying 𝑚 ∈ 𝒫, 𝑛 ∈ 𝒬 and 𝒫 ∩ 𝒬 = ∅. 

Proposition 6.1.11 

For every 𝑇2 GTS (𝒳, 𝒯), the N-TS (𝒳, 𝒯 ∖ ∅) is 𝑇2
𝑁.  

Proof: By theorem 1.6.15, if (𝒳, 𝒯) is a GTS then (𝒳, 𝒯 ∖ ∅) is a N-TS. 

Proposition 6.1.12 

For every 𝑇2 GTS (𝒳, 𝒯), the N-TS (𝒳, 𝒯 ∖ 𝒳) is 𝑇2
𝑁. 

Proof: By theorem 1.6.16, if (𝒳, 𝒯) is a GTS then (𝒳, 𝒯 ∖ 𝒳) is a N-TS. 

Proposition 6.1.13 

Every sub-space of a 𝑇2
𝑁 space is also a 𝑇2

𝑁 space.       

Proof: 

Let us assume that the N-TS (𝒳, 𝒯𝑥) is 𝑇2
𝑁 and let (𝒴, 𝒯𝑦) be a sub-space of (𝒳, 𝒯𝑥) and 

say, 𝑦1 ≠ 𝑦2  are two random points in 𝒴 . Then 𝒴  being a subspace of 𝒳 , so 𝑦1, 𝑦2 
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happens to be random points in 𝒳 and by virtue of being a 𝑇2
𝑁 space there will be two 

N-OSs ℘𝑦1
, ℘𝑦2

 in 𝒯𝑥 so that so that 𝑦1 ∈ ℘𝑦1
, 𝑦2 ∈ ℘𝑦2

 with ℘𝑦1
∩ ℘𝑦2

= ∅.  Now, in 

the sub-space 𝒴 we will have N-OSs ℘1 = ℘𝑦1
∩ 𝒴 and ℘2 = ℘𝑦2

∩ 𝒴 so that 𝑦1 ∈ ℘1 

and 𝑦2 ∈ ℘2 and ℘1 ∩ ℘2 = ∅. Thus, the sub-space (𝒴, 𝒯𝑦) is also a 𝑇2
𝑁 space.  

Proposition 6.1.14 

Every 𝑇2
𝑁 space is also a 𝑇1

𝑁 space. 

Proof: 

Let the N-TS (𝒳, 𝒯) be a 𝑇2
𝑁  space, then for 𝑥 ≠ 𝑦 ∈ 𝒳 there exist ℒ, ℳ ∈ 𝒯so that 

𝑥 ∈ ℒ, 𝑦 ∈ ℳ and ℒ ∩ ℳ = ∅. The conditions ℒ ∩ ℳ = ∅ and 𝑥 ∈ ℒ results in 𝑦 ∉ ℒ 

and further 𝑦 ∈ ℳ  with ℒ ∩ ℳ = ∅  results in 𝑥 ∉ ℳ  and hence the space (𝒳, 𝒯𝑥) 

which is a 𝑇2
𝑁 space is also a 𝑇1

𝑁 space. 

Proposition 6.1.15 

In a 𝑇2
𝑁  space, the intersection of all N-C Nu-nhds of any point in the space is 

necessarily a singleton. 

Proof: 

Let the N-TS (𝒳, 𝒯) be 𝑇2
𝑁, then for 𝑚 ≠ 𝑛 ∈ 𝒳 there are ℰ, ℱ ∈ 𝒯 that satisfy 𝑚 ∈ ℳ, 

𝑛 ∈ 𝒩  and ℳ ∩ 𝒩 = ∅ .  Now, 𝑚 ∈ ℳ  and ℳ ∩ 𝒩 = ∅ ⇒ 𝑚 ∈ ℳ ⊆ 𝑐(𝒩). Thus 

𝑐(𝒩) is a N-C Nu-nhd of the point 𝑚 and 𝑛 ∉ 𝑐(𝒩). Thus, the point 𝑛 will not belong 

to the intersection of the N-C Nu-nhds of 𝑚  and since the point 𝑛  happens to be 

arbitrary, the intersection in context will only consist of the single point 𝑚  or the 

singleton {𝑚}.      

Proposition 6.1.16 

If a one-one, onto, N-O and Nu-continuous mapping 𝑓 exists between two N-TSs (𝒳, 𝒯𝑥) 

and (𝒴, 𝒯𝑦) and if (𝒳, 𝒯𝑥) is 𝑇2
𝑁 then the space (𝒴, 𝒯𝑦) is also 𝑇2

𝑁.   

Proof: 

Let (𝒳, 𝒯𝑥) be 𝑇2
𝑁 and 𝑓 be a one-one and N-O mapping of (𝒳, 𝒯𝑥) onto (𝒴, 𝒯𝑦), let us 

assume two distinct points 𝑦1 ≠ 𝑦2 ∈ 𝒴. Now, since 𝑓 is onto, there will be elements 

𝑥1 ≠ 𝑥2 ∈ 𝒳  so that 𝑓(𝑥1) = 𝑦1  and 𝑓(𝑥2) = 𝑦2 . Again, since (𝒳, 𝒯𝑥) is a 𝑇2
𝑁  space, 

there are 𝒪𝑥 , 𝒪𝑦 ∈ 𝒯𝑥 so that 𝑥 ∈ 𝒪𝑥 and, 𝑦 ∈ 𝒪𝑦 and 𝒪𝑥 ∩ 𝒪𝑦 = ∅. Also, since 𝑓 is N-O 

so there exist  𝑓(𝒪𝑥), 𝑓(𝒪𝑦) ∈ 𝒯𝑦  so that 𝑦1 = 𝑓(𝑥1) ∈ 𝑓(𝒪𝑥) , 𝑦2 = 𝑓(𝑥2) ∈ 𝑓(𝒪𝑦) 
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and 𝑓(𝒪𝑥) ∩ 𝑓(𝒪𝑦) = 𝑓(𝒪𝑥 ∩ 𝒪𝑦) = 𝑓(∅) = ∅, since 𝑓 is one-one and onto. Hence the 

space (𝒴, 𝒯𝑦) is 𝑇2
𝑁.     

Proposition 6.1.17 

If a one-one, onto, and Nu-continuous mapping 𝑓 exists between two N-TSs (𝒳, 𝒯𝑥) and 

(𝒴, 𝒯𝑦) and if (𝒴, 𝒯𝑦) is 𝑇2
𝑁 then the space  (𝒳, 𝒯𝑥) is also 𝑇2

𝑁.   

Proof: 

Assume 𝑥1 ≠ 𝑥2 ∈ 𝒳 then since 𝑓 is one-one, so 𝑥1 ≠ 𝑥2 ⇒ 𝑓(𝑥1) ≠ 𝑓(𝑥2). Suppose 

that 𝑓(𝑥1) = 𝑦1 and 𝑓(𝑥2) = 𝑦2 or, 𝑥1 = 𝑓−1(𝑦1) and 𝑥2 = 𝑓−1(𝑦2).  

Then for 𝑦1 ≠ 𝑦2 ∈ 𝒴  and since (𝒴, 𝒯𝑦)  is a 𝑇2
𝑁  space, we have 𝑄1, 𝑄2 ∈ 𝒯𝑦  so that 

𝑦1 ∈ 𝑄1 and 𝑦2 ∈ 𝑄2 and 𝑄1 ∩ 𝑄2 = ∅.  

Again, since 𝑓 is Nu-continuous 𝑓−1(𝑄1), 𝑓−1(𝑄1) ∈ 𝒯𝑥 so that we have: 

𝑦1 ∈ 𝑄1  ⇒ 𝑓−1(𝑦1) ∈ 𝑓−1(𝑄1)  which in turn implies 𝑥1 ∈ 𝑓−1(𝑄1) . Similarly, we 

have: 𝑦2 ∈ 𝑄2  ⇒ 𝑓−1(𝑦2) ∈ 𝑓−1(𝑄2)  which in turn implies 𝑥2 ∈ 𝑓−1(𝑄2)  and 

moreover, we have: 𝑓−1(𝑄1) ∩ 𝑓−1(𝑄2) =  𝑓−1(𝑄1 ∩ 𝑄2) = 𝑓−1(∅) = ∅.  

Thus, for two arbitrary points 𝑥1 ≠ 𝑥2 ∈ 𝒳 , we have 𝑓−1(𝑄1), 𝑓−1(𝑄1) ∈ 𝒯𝑥  so that 

𝑥1 ∈ 𝑓−1(𝑄1) and 𝑥2 ∈ 𝑓−1(𝑄2) and 𝑓−1(𝑄1) ∩ 𝑓−1(𝑄2) = ∅.  

Hence the space (𝒳, 𝒯𝑥) is also 𝑇2
𝑁. 

Definition 6.1.4 

A N-TS (𝒳, 𝒯) will be called a Nu-regular space if corresponding to any N-CS 𝒞 and 

𝑥 ∉ 𝒞 there are 𝒪𝑐 , 𝒪𝑥 ∈ 𝒯 so that: 𝒞 ⊆ 𝒪𝑐, 𝑥 ∈ 𝒪𝑥 and 𝒪𝑐 ∩ 𝒪𝑥 = ∅. If the Nu-regular 

N-TS (𝒳, 𝒯) is also 𝑇1
𝑁 then this N-TS is called a Nu-𝑇3 space (𝑇3

𝑁 in short). That is, a 

𝑇3
𝑁 space is a Nu-regular space satisfying the conditions for a 𝑇1

𝑁space. 

Proposition 6.1.18 

For every regular GTS (𝒳, 𝒯), the N-TS (𝒳, 𝒯 ∖ ∅) is Nu-regular. 

Proof: By theorem 1.6.15, if (𝒳, 𝒯) is a GTS then (𝒳, 𝒯 ∖ ∅) is a N-TS.  

Proposition 6.1.19 

For every regular GTS (𝒳, 𝒯), the N-TS (𝒳, 𝒯 ∖ 𝒳) is Nu-regular. 

Proof: By theorem 1.6.16, if (𝒳, 𝒯) is a GTS then (𝒳, 𝒯 ∖ 𝒳) is a N-TS. 
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Proposition 6.1.20 

For a Nu-regular N-TS (𝒳, 𝒯), for arbitrary 𝑥 ∈ 𝒳 and random Nu-nhd 𝒩 of 𝑥, there 

will be a Nu-nhd 𝒬 of 𝑥 so that 𝒬𝑁𝑢−𝑐𝑙 ⊆ 𝒩. 

Proof: 

Let the space be Nu-regular and assume 𝒩 to be a Nu-nhd of 𝑥, then there will be a N-

OS 𝒪  so that 𝑥 ∈ 𝒪 ⊆ 𝒩 . Now, 𝒸𝒪  is N-CS and 𝑥 ∉ 𝒸𝒪  so by Nu-regularity of the 

space, we have: 𝒫, 𝒬 ∈ 𝒯 that satisfies 𝒸𝒪 ⊆ 𝒫, 𝑥 ∈ 𝒬 and 𝒫 ∩ 𝒬 = ∅ that leads to the 

fact that 𝒬 ⊆ 𝒸𝒫.  

Also, 𝒬 ⊆ 𝒸𝒫 ⇒ 𝒬𝑁𝑢−𝑐𝑙 ⊆ (𝒸𝒫)𝑁𝑢−𝑐𝑙, by proposition 2.3.3 (iii) 

⇒ 𝒬𝑁𝑢−𝑐𝑙 ⊆ 𝒸𝒫, since 𝒸𝒫 is N-C and by proposition 2.3.2. 

Also, 𝒸𝒪 ⊆ 𝒫 ⇒ 𝒸𝒫 ⊆ 𝒪 ⊆ 𝒩 and thus: 𝒬𝑁𝑢−𝑐𝑙 ⊆ 𝒩. 

Remark 6.1.3 

The converse of proposition 6.1.20 is not always true in a N-TS as it would be in a GTS. 

This is because, if we assume the condition to be true in the converse part and assume 𝒞 

to be some N-CS so that 𝑥 ∉ 𝒞  then 𝑥 ∈ 𝒸𝒞 , with 𝒸𝒞  being a N-OS and so by the 

assumed condition there will exist a N-OS 𝒪  so that 𝑥 ∈ 𝒪  and 𝒪𝑁𝑢−𝑐𝑙 ⊆ 𝒸𝒞  which 

gives 𝒞 ⊆ 𝒸(𝒪𝑁𝑢−𝑐𝑙). But, since in a N-TS, 𝒪𝑁𝑢−𝑐𝑙 will not be always N-CS [remark 

2.3.1 and remark 2.3.2]. Thus, 𝒸(𝒪𝑁𝑢−𝑐𝑙) is not always a N-OS and because of this the 

Nu-regularity of the space fails in a N-TS.    

Proposition 6.1.21 

Every 𝑇3
𝑁 space is also a 𝑇2

𝑁 space. 

Proof: 

Let the N-TS (𝒳, 𝒯) be 𝑇3
𝑁, then it is both 𝑇1

𝑁 and Nu-regular. Thus, for 𝑥1 ≠ 𝑥2 ∈ 𝒳, 

by virtue of being 𝑇1
𝑁 there are N-OSs 𝒪1 and 𝒪2 so that 𝑥1 ∈ 𝒪1 ∖ 𝒪2 and 𝑥2 ∈ 𝒪2 ∖ 𝒪1.  

Now,  𝑥1 ∈ 𝒪1 means 𝑥1 ∉ 𝑐(𝒪1) and 𝑐(𝒪1) is a N-CS and hence by virtue of being Nu-

regular there will be N-OSs 𝒫 and 𝒬 that satisfy 𝑥1 ∈ 𝒫, 𝑐(𝒪1) ⊆ 𝒬 and 𝒫 ∩ 𝒬 = ∅. 

Now, 𝑥2 ∈ 𝒪2 ∖ 𝒪1 ⇒ 𝑥2 ∉ 𝒪1 ⇒ 𝑥2 ∈ 𝑐(𝒪1) ⊆ 𝒬 ⇒ 𝑥2 ∈ 𝒬.  

Thus, for arbitrary 𝑥1 ≠ 𝑥2 ∈ 𝒳 , we have N-OSs 𝒫  and 𝒬  satisfying 𝑥1 ∈ 𝒫 , 𝑥2 ∈ 𝒬 

and 𝒫 ∩ 𝒬 = ∅. Hence, the space (𝒳, 𝒯) which is 𝑇3
𝑁, is also 𝑇2

𝑁.             
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Proposition 6.1.22 

If a one-one, onto, N-O and weakly Nu-continuous mapping 𝑓 exists between two N-TSs 

(𝒳, 𝒯𝑥)  and (𝒴, 𝒯𝑦)  and if (𝒳, 𝒯𝑥)  is Nu-regular then the space (𝒴, 𝒯𝑦)  is also Nu-

regular. 

Proof: 

We assume 𝒞 to be N-C with respect to 𝒯𝑦 and let 𝑞 to be a point in 𝒴 so that 𝑞 ∉ 𝒞. 

Now, since 𝑓  is one-one and onto, ∃ 𝑝 ∈ 𝒳  so that 𝑓(𝑝) =  𝑞 ⇔ 𝑓−1(𝑞) = 𝑝 . 

Moreover, since 𝑓 is weakly Nu-continuous, by proposition 5.1.4, 𝑓−1(𝒞) is N-C with 

respect to 𝒯𝑥.  

Also, 𝑞 ∉ 𝒞 ⇒ 𝑓−1(𝑞) ∉ 𝑓−1(𝒞) ⇒ 𝑝 ∉ 𝑓−1(𝒞).  

Thus, 𝑓−1(𝒞) is N-C in 𝒳 and 𝑝 ∈ 𝒳 such that 𝑝 ∉ 𝑓−1(𝒞).  

Hence, by the Nu-regularity of the space 𝒳, we have N-OSs 𝒫 and 𝒬 that satisfy 𝑝 ∈ 𝒫, 

𝑓−1(𝒞) ⊆ 𝒬 and 𝒫 ∩ 𝒬 = ∅. 

Now, 𝑝 ∈ 𝒫 ⇒ 𝑓(𝑝) ∈ 𝑓(𝒫) ⇒ 𝑞 ∈ 𝑓(𝒫) 

And 𝑓−1(𝒞) ⊆ 𝒬 ⇒ 𝑓(𝑓−1(𝒞)) ⊆ 𝑓(𝒬) ⇒ 𝒞 ⊆ 𝑓(𝒬) 

And 𝒫 ∩ 𝒬 = ∅ ⇒ 𝑓(𝒫 ∩ 𝒬) = 𝑓(∅) ⇒ 𝑓(𝒫) ∩ 𝑓(𝒬) = ∅ , since 𝑓 is one-one. 

Also 𝑓 being N-O so 𝑓(𝒫) and 𝑓(𝒬) are N-O with respect to 𝒯𝑦. Thus, for an arbitrary 

member 𝑦  in 𝒴  and a N-CS 𝒞 with respect to 𝒯𝑦 so that 𝑦 ∉ 𝒞 , we have N-OSs 

𝑓(𝒫)and 𝑓(𝒬)  satisfying𝑦 ∈ 𝑓(𝒫) , 𝒞 ⊆ 𝑓(𝒬)and 𝑓(𝒫) ∩ 𝑓(𝒬) = ∅ thereby showing 

that the space (𝒴, 𝒯𝑦) is Nu-regular.  

Proposition 6.1.23 

Every sub-space (𝒜, 𝒯𝒜) of a Nu-regular space (𝒳, 𝒯𝑥), is Nu-regular.  

Proof: 

Let us assume that ℱ be an arbitrary 𝒯𝒜-N-CS and 𝑦 be an arbitrary point in 𝒜 so that 

𝑦 ∉ ℱ. Now, by proposition 2.5.1 (ii) we have ℱ𝒴
𝑁𝑢−𝑐𝑙 = ℱ𝒳

𝑁𝑢−𝑐𝑙 ∩ 𝒜 where ℱ𝒳
𝑁𝑢−𝑐𝑙 is 

the N-C of ℱ  in the space (𝒳, 𝒯𝑥) . Also ℱ  being N-C with respect to 𝒯𝒜  we have 

ℱ𝒜
𝑁𝑢−𝑐𝑙 = ℱ and so we have: ℱ = ℱ𝒳

𝑁𝑢−𝑐𝑙 ∩ 𝒜 ............... (1) 

Now, 𝑦 ∉ ℱ ⇒ 𝑦 ∉ ℱ𝒳
𝑁𝑢−𝑐𝑙 ∩ 𝒜 ⇒ 𝑦 ∉ ℱ𝒳

𝑁𝑢−𝑐𝑙 as 𝑦 ∈ 𝒜. 

Now, by proposition 2.5.1 (i) and (1) we have ℱ𝒳
𝑁𝑢−𝑐𝑙 to be N-C with respect to 𝒯𝑥 and 

we have a point 𝑦 ∉ ℱ𝒳
𝑁𝑢−𝑐𝑙 and so by the Nu-regularity of the space (𝒳, 𝒯𝑥), we have 



9 
 

N-OSs 𝒢  and ℋ  in 𝒯𝑥  so that 𝑦 ∈ 𝒢 ,  ℱ𝒳
𝑁𝑢−𝑐𝑙 ⊆ ℋ  and 𝒢 ∩ ℋ = ∅. Now, 𝑦 ∈ 𝒜  with 

𝑦 ∈ 𝒢 ⇒ 𝑦 ∈ 𝒢 ∩ 𝒜  and ℱ𝒳
𝑁𝑢−𝑐𝑙 ⊆ ℋ ⇒ ℱ𝒳

𝑁𝑢−𝑐𝑙 ∩ 𝒜 ⊆ ℋ ∩ 𝒜 ⇒ ℱ ⊆ ℋ ∩ 𝒜 , from 

(1). Also, (𝒢 ∩ 𝒜) ∩ (ℋ ∩ 𝒜) = (𝒢 ∩ ℋ) ∩ 𝒜 = ∅ ∩ 𝒜 = ∅. If we put 𝒢 ∩ 𝒜 = 𝒫 

and ℋ ∩ 𝒜 = 𝒬, then 𝒫 and 𝒬 are N-OSs in 𝒯𝒜  since 𝒢 and ℋ are N-O in 𝒯𝑥 .  Thus, 

for arbitrary N-CS ℱ  in 𝒜  and an arbitrary point 𝑦 ∉ ℱ , we have 𝑦 ∈ 𝒫, ℱ ⊆ 𝒬  and 

𝒫 ∩ 𝒬 = ∅ thereby showing that (𝒜, 𝒯𝒜) is Nu-regular.            

Proposition 6.1.24 

A sub-space (𝒴, 𝒯𝑦) of a 𝑇3
𝑁 space (𝒳, 𝒯𝑥) is also 𝑇3

𝑁.  

Proof: 

A 𝑇3
𝑁 space is a 𝑇1

𝑁 space which is Nu-regular. By proposition 6.1.7 a sub-space of a 

𝑇1
𝑁 is a 𝑇1

𝑁 space and by proposition 6.1.23 a sub-space of a Nu-regular space is Nu-

regular. Thus, if (𝒳, 𝒯𝑥)  is 𝑇3
𝑁  then it is both 𝑇1

𝑁  and Nu-regular, thus by the 

propositions 6.1.7 and 6.1.23, the sub-space (𝒴, 𝒯𝑦) of (𝒳, 𝒯𝑥) is also a 𝑇3
𝑁 space. 

Proposition 6.1.25 

For every 𝑇3 GTS (𝒳, 𝒯), the N-TS (𝒳, 𝒯 ∖ ∅) is 𝑇3
𝑁.  

Proof: By theorem 1.6.15, if (𝒳, 𝒯) is a GTS then (𝒳, 𝒯 ∖ ∅) is a N-TS. 

Proposition 6.1.26 

For every 𝑇3 GTS (𝒳, 𝒯), the N-TS (𝒳, 𝒯 ∖ 𝒳) is 𝑇3
𝑁. 

Proof: By theorem 1.6.16, if (𝒳, 𝒯) is a GTS then (𝒳, 𝒯 ∖ 𝒳) is a N-TS. 

Definition 6.1.5 

A N-TS (𝒳, 𝒯) will be termed a Nu-normal space if corresponding to a pair of disjoint 

N-CSs 𝒞 and 𝒟, there exists 𝒪𝐶 , 𝒪𝐷 ∈ 𝒯 so that: 𝒞 ⊆ 𝒪𝐶 , 𝒟 ∈ 𝒪𝐷  and 𝒪𝐶 ∩ 𝒪𝐷 = ∅. If 

the space (𝒳, 𝒯) is also 𝑇1
𝑁 then the space is called a Nu-𝑇4 space (𝑇4

𝑁 in short). 

Proposition 6.1.27 

Let a N-TS (𝒳, 𝒯) be Nu-normal. Then for any N-CS ℱ and a N-OS 𝒢 which contain ℱ, 

there exists a N-OS 𝒱 so that ℱ ⊆ 𝒱 and 𝒱𝑁𝑢−𝑐𝑙 ⊆ 𝒢. 

Proof: 

Let us first assume that the space (𝒳, 𝒯) be Nu-normal and ℱ is some N-CS and 𝒢 is 

some N-OS in 𝒯 such that ℱ ⊂ 𝒢. Then 𝒸𝒢 is N-C and ℱ ∩ 𝒸𝒢 = ∅. Thus, ℱ and 𝒸𝒢 are 
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disjoint N-CSs and hence by the property of Nu-normality of the space there will be two 

N-OSs 𝒰 and 𝒱 that satisfy 𝒸𝒢 ⊆ 𝒰, ℱ ⊆ 𝒱, and 𝒰 ∩ 𝒱 = ∅.  

Now, 𝒰 ∩ 𝒱 = ∅ ⇒ 𝒱 ⊆ 𝒸𝒰, with 𝒸𝒰 being N-C.  

Also 𝒱 ⊆ 𝒸𝒰 ⇒ 𝒱𝑁𝑢−𝑐𝑙 ⊆ (𝒸𝒰)𝑁𝑢−𝑐𝑙 = 𝒸𝒰, 𝒸𝒰 being N-C.  

Also 𝒸𝒢 ⊆ 𝒰 ⇒ 𝒸𝒰 ⊆ 𝒢 and hence 𝒱𝑁𝑢−𝑐𝑙 ⊆ 𝒢.  

Thus, we get ℱ ⊆ 𝒱 and 𝒱𝑁𝑢−𝑐𝑙 ⊆ 𝒢. 

Proposition 6.1.28 

If (𝒴, 𝒯𝑦) is Nu-homomorphic to a Nu-normal N-TS (𝒳, 𝒯𝑥), then (𝒴, 𝒯𝑦) is also Nu-

normal.  

Proof: 

We assume ℱ and 𝒢 to be two random disjoint N-CSs with respect to 𝒯𝑦 and let 𝜓 be a 

Nu-homomorphism between (𝒳, 𝒯𝑥) and (𝒴, 𝒯𝑦). Then 𝜓  is a weakly Nu-continuous 

map and as such 𝜓−1(ℱ) and 𝜓−1(𝐺) are N-C with respect to 𝒯𝑥, by proposition 5.1.4.    

Also, 𝜓−1(ℱ) ∩  𝜓−1(𝒢) =  𝜓−1(ℱ ∩ 𝒢) =  𝜓−1(∅) = ∅, since𝜓is one-one.  

Thus, 𝜓−1(ℱ) and 𝜓−1(𝒢) are disjoint N-CSs with respect to 𝒯𝑥  and since the space 

(𝒳, 𝒯𝑥) is Nu-normal, so there will be N-OSs 𝒫 and 𝒬 in 𝒯𝑥, so that 𝜓−1(ℱ) ⊆ 𝒫 and 

𝜓−1(𝒢) ⊆ 𝒬 and 𝒫 ∩ 𝒬 = ∅. 

Now, 𝜓−1(ℱ) ⊆ 𝒫 ⇒ 𝜓[𝜓−1(ℱ)] ⊆ 𝜓(𝒫) ⇒ ℱ ⊆ 𝜓(𝒫)  and similarly 𝒢 ⊆ 𝜓(𝒬) . 

Also, 𝜓 being N-O, by proposition 5.1.17, the sets 𝜓(𝒫) and 𝜓(𝒬) are N-O in 𝒯𝑦 such 

that 𝜓(𝒫) ∩ 𝜓(𝒬) = 𝜓(𝒫 ∩ 𝒬) = ∅, since 𝜓 is one-one. Thus, if we put 𝜓(𝒫) = ℳ 

and 𝜓(𝒬) = 𝒩, then ℳ and 𝒩 are N-O in 𝒯𝑦  and ℱ ⊆ ℳ, 𝒢 ⊆ 𝒩  and ℳ ∩ 𝒩 = ∅. 

This leads to the conclusion that (𝒴, 𝒯𝑦) is also Nu-normal.                

Proposition 6.1.29 

Every 𝑇4
𝑁 space is also a 𝑇3

𝑁 space. 

Proof: 

If the N-TS (𝒳, 𝒯) is 𝑇4
𝑁, then it is 𝑇1

𝑁 and Nu-normal. Thus, it would be sufficient to 

show that (𝒳, 𝒯) is Nu-regular.  

Now, since 𝒳 is Nu-normal, so for two arbitrary disjoint N-CSs ℱ and 𝒢, there exist N-

OSs 𝒫 and 𝒬 satisfying ℱ ⊆ 𝒫, 𝒢 ⊆ 𝒬 and 𝒫 ∩ 𝒬 = ∅.     
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Now, if we assume the N-CS ℱ in 𝒳, which was chosen arbitrarily and a random point 

𝑥 in 𝒢 so that 𝑥 ∉ ℱ  as ℱ ∩ 𝒢 = ∅ then the N-OSs 𝒫 and 𝒬 that satisfy 𝑥 ∈ 𝒬 ,ℱ ⊆ 𝒫 

and 𝒫 ∩ 𝒬 = ∅. Hence, (𝒳, 𝒯) is also a 𝑇3
𝑁 space.     

6.2 Separation Axioms in Anti-Topological Spaces 

Definition 6.2.1 

An A-TS (𝒳, 𝒯) will be an anti-𝑇0 space (𝑇0
𝐴 in short) if for random elements 𝑥 ≠ 𝑦 

there is a  𝒬 ∈ 𝒯  for which, whenever 𝑥 ∈ 𝒬, 𝑦 ∉ 𝒬  or, whenever 𝑦 ∈ 𝒬 , 𝑥 ∉ 𝒬 . In 

other words, for any set of two unequal points in the space there will be an anti-open set 

that enclose one of the points excluding the other. 

Proposition 6.2.1 

Let an A-TS (𝒳, 𝒯)  be an 𝑇0
𝐴  space then for arbitrary distinct points 𝑥, 𝑦  in 𝒳 , 

[{𝑥}]𝐴𝑛𝑡𝑖−𝑐𝑙 ∩ [{𝑦}]𝐴𝑛𝑡𝑖−𝑐𝑙 = ∅. 

Proof: 

Assume 𝒳 to be 𝑇0
𝐴 and 𝑥 ≠ 𝑦 be arbitrary elements in 𝒳, then there will be ℒ ∈ 𝒯 so 

that whenever 𝑥 ∈ ℒ, 𝑦 ∉ ℒ or, whenever 𝑦 ∈ ℒ, 𝑥 ∉ ℒ .  

Now, whenever 𝑥 ∈ ℒ, {𝑥} ⊆ ℒ and whenever 𝑦 ∉ ℒ, {𝑦} ⊄ ℒ 

Again, whenever {𝑥} ⊆ ℒ, [{𝑥}]𝐴𝑛𝑡𝑖−𝑐𝑙 ⊆ ℒ𝐴𝑛𝑡𝑖−𝑐𝑙 by proposition 4.3.3 (iii) 

Also, {𝑦} ⊄ ℒ ⇒ [{𝑦}]𝐴𝑛𝑡𝑖−𝑐𝑙 ⊄ ℒ𝐴𝑛𝑡𝑖−𝑐𝑙. Thus, [{𝑥}]𝐴𝑛𝑡𝑖−𝑐𝑙 ∩ [{𝑦}]𝐴𝑛𝑡𝑖−𝑐𝑙 = ∅.  

Corollary 6.2.1 

Let an A-TS (𝒳, 𝒯) be an 𝑇0
𝐴 space. Then for arbitrary distinct points 𝑝, 𝑞 in 𝒳, 𝑝 ∉

[{𝑞}]𝐴𝑛𝑡𝑖−𝑐𝑙 and 𝑞 ∉ [{𝑝}]𝐴𝑛𝑡𝑖−𝑐𝑙. 

Proposition 6.2.2 

For every 𝑇0
𝐴 A-TS (𝒳, 𝒯), the N-TS (𝒳, 𝒯 ∪ ∅) is 𝑇0

𝑁.  

Proof: By theorem 1.6.18, if (𝒳, 𝒯) is an A-TS, then (𝒳, 𝒯 ∪ ∅) is a N-TS. 

Proposition 6.2.3 

For every 𝑇0
𝐴 A-TS (𝒳, 𝒯), the N-TS (𝒳, 𝒯 ∪ 𝒳) is 𝑇0

𝑁.  

Proof: By theorem 1.6.19, if (𝒳, 𝒯) is an A-TS, then (𝒳, 𝒯 ∪ 𝒳) is a N-TS 
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Remark 6.2.1 

Propositions 6.2.2 and 6.2.3 shows that a 𝑇0
𝑁  space can be obtained from every 𝑇0

𝐴 

space. And this follows from remark 1.6.11 of chapter 1. 

Proposition 6.2.4 

If a one-one, onto, and A-O mapping 𝑓 exists between two A-TSs (𝒳, 𝒯𝑥) and (𝒴, 𝒯𝑦) 

and if (𝒳, 𝒯𝑥) is 𝑇0
𝐴 then the space (𝒴, 𝒯𝑦) is also  𝑇0

𝐴.   

Proof: 

When (𝒳, 𝒯𝑥) is 𝑇0
𝐴 and 𝑓 is a one-one A-O mapping, let us assume two distinct points 

𝑦1 ≠ 𝑦2 ∈ 𝒴. Now, since 𝑓 is onto, there will be elements 𝑥1 ≠ 𝑥2 ∈ 𝒳 so that 𝑓(𝑥1) =

𝑦1  and 𝑓(𝑥2) = 𝑦2 . Again, since (𝒳, 𝒯𝑥)  is an 𝑇0
𝐴  space, there is a ℛ ∈ 𝒯𝑥  which 

contains one of 𝑥1  or  𝑥2  only and not the other. If 𝑥1 ∈ ℛ  then 𝑓(𝑥1) ∈ 𝑓(𝒫) ∈ 𝒯𝑦 

since 𝑓 is A-O. Thus, 𝑦1 ∈ 𝑓(ℛ) ∈ 𝒯𝑦 thereby meaning that 𝑓(ℛ) ∈ 𝒯𝑦 contains  𝑦1 but 

not 𝑦2 and hence the space (𝒴, 𝒯𝑦) is also 𝑇0
𝐴 since the points 𝑦1 and 𝑦2 are arbitrary. 

Definition 6.2.2 

An A-TS (𝒳, 𝒯) will be termed as anti-𝑇1 (𝑇1
𝐴 in short) if for each arbitrary pair of 

points 𝑝 ≠ 𝑞 in 𝒳 there exist 𝒦, ℒ ∈ 𝒯 satisfying 𝑝 ∈ 𝒦 ∖ ℒ and, 𝑞 ∈ ℒ ∖ 𝒦.  

Proposition 6.2.5 

If the singleton subsets of an A-TS (𝒳, 𝒯) are A-C then the A-TS will be a 𝑇1
𝐴 space. 

Proof: 

For two random points: 𝑝, 𝑞 in 𝒳, if we first assume the singleton {𝑝} = 𝒫 ⊆ 𝒳 is A-C, 

then 𝑐𝒫 ∈ 𝒯  with 𝑝 ∉ 𝑐𝒫  but 𝑞 ∈ 𝑐𝒫 . Analogously, 𝑐({𝑞} = 𝒬) ∈ 𝒯  with 𝑞 ∉ 𝑐𝒬  but 

𝑝 ∈ 𝑐𝒬. Hence, if we assume: ℳ = 𝑐𝒬 and 𝒩 = 𝑐𝒫, then the space (𝒳, 𝒯) will satisfy 

the condition for being a 𝑇1
𝐴 space if the singleton subsets are A-C.   

Remark 6.2.2 

The converse of proposition 6.2.5 is however not true and can be observed from the 

following example: Let us assume 𝒳 = {1,2,3,4,5} , and the A-T  𝒯 =

{∅, {1,2,3}, {1,2,4}, {1,2,5}, {1,3,4}, {1,3,5}, {2,3,4}, {2,3,5}, {3,4,5}, then (𝒳, 𝒯) is an A-

TS. For any pair of distinct points, the condition for 𝑇1
𝐴 is satisfied but none of the 
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singleton subsets of 𝒳 are A-C. However, as seen in the proposition 6.2.5, when the 

singletons are closed then the space is 𝑇1
𝐴. 

Proposition 6.2.6 

If a one-one, onto, and A-O mapping 𝑓 exists between two A-TSs (𝒳, 𝒯𝑥) and (𝒴, 𝒯𝑦) 

and if (𝒳, 𝒯𝑥) is 𝑇1
𝐴 then (𝒴, 𝒯𝑦) is also 𝑇1

𝐴.   

Proof: 

Let (𝒳, 𝒯𝑥)  be 𝑇1
𝐴 and 𝑓  be a one-one, onto and A-O mapping. Let us assume two 

distinct points 𝑞1, 𝑞2 ∈ 𝒴. Now, since 𝑓 is onto, there will be elements 𝑝1 ≠ 𝑝2 ∈ 𝒳 

satisfying 𝑓(𝑝1) = 𝑞1  and 𝑓(𝑝2) = 𝑞2 . Again, (𝒳, 𝒯𝑥)  being a 𝑇1
𝐴 space, there exist 

𝒫, 𝒬 ∈ 𝒯𝑥 satisfying 𝑝 ∈ 𝒫 ∖ 𝒬 and, 𝑞 ∈ 𝒬 ∖ 𝒫 with arbitrary points 𝑝, 𝑞 in 𝒳. Further, 

𝑓  being A-O  𝑓(𝒬), 𝑓(𝒬) ∈ 𝒯𝑦  and as such, we have 𝑞1 = 𝑓(𝑝1) ∈ 𝑓(𝒫) ∖ 𝑓(𝒬) and 

𝑞2 = 𝑓(𝑝2) ∈ 𝑓(𝒬) ∖ 𝑓(𝒫) thereby showing that (𝒴, 𝒯𝑦) is also a 𝑇1
𝐴 space, the points 

𝑞1 and 𝑞2 being distinct and arbitrary.  

Proposition 6.2.7 

Every sub-space of an 𝑇1
𝐴 space is an 𝑇1

𝐴 space.       

Proof: 

Let us assume that the A-TS (𝒳, 𝒯𝑥) be 𝑇1
𝐴 and let (𝒜, 𝒯𝒜) be a sub-space of the space 

(𝒳, 𝒯𝑥). Let 𝑦1 ≠ 𝑦2 are two arbitrary points in 𝒜. Since 𝒜 is a sub-space of 𝒳, so 

𝑦1, 𝑦2 will be arbitrary points in 𝒳 and by virtue of being a 𝑇1
𝐴 space there will be two 

A-OSs  𝒬𝑦1
, 𝒬𝑦2

 in 𝒯𝑥  so that so that 𝑦1 ∈ 𝒬𝑦1
∖ 𝒬𝑦2

 and 𝑦2 ∈ 𝒬𝑦2
∖ 𝒬𝑦1

. Now, in the 

sub-space 𝒜 we will have A-OSs 𝒬1 = 𝒬𝑦1
∩ 𝒜 and 𝒬2 = 𝒬𝑦2

∩ 𝒜 so that 𝑦1 ∈ 𝒬1 ∖

𝒬2 and 𝑦2 ∈ 𝒬2 ∖ 𝒬1 and as such the sub-space (𝒜, 𝒯𝒜) becomes a 𝑇1
𝐴 space.       

Proposition 6.2.8 

Every 𝑇1
𝐴 space is also an 𝑇0

𝐴 space.       

Proof: 

When (𝒳, 𝒯) is 𝑇1
𝐴, then for arbitrary set of unequal points 𝑝, 𝑞 there exist 𝒦, ℒ ∈ 𝒯 

that satisfy 𝑝 ∈ 𝒦 ∩ 𝑐ℒ  and, 𝑞 ∈ ℒ ∩ 𝑐𝒦  which means that whenever 𝑝 ∈ 𝒦, 𝑞 ∉ 𝒦 

and whenever 𝑞 ∈ ℒ, 𝑝 ∉ ℒ. Hence (𝒳, 𝒯) is 𝑇0
𝐴. 
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Proposition 6.2.9 

For every 𝑇1
𝐴 A-TS (𝒳, 𝒯), the N-TS (𝒳, 𝒯 ∪ ∅) is 𝑇1

𝑁.  

Proof: By theorem 1.6.18, if (𝒳, 𝒯) is an A-TS then (𝒳, 𝒯 ∪ ∅) is a N-TS. 

Proposition 6.2.10 

For every 𝑇1
𝐴 A-TS (𝒳, 𝒯), the N-TS (𝒳, 𝒯 ∪ 𝒳) is 𝑇1

𝑁. 

Proof: By theorem 1.6.19, if (𝒳, 𝒯) is an A-TS then (𝒳, 𝒯 ∪ 𝒳) is a N-TS. 

Definition 6.2.3 

An A-TS (𝒳, 𝒯) will be called an anti-𝑇2 space (𝑇2
𝐴 in short) whenever for arbitrary 

pair of unequal points 𝑝 and 𝑞 in 𝒳 there exist  𝒦, ℒ ∈ 𝒯 such that 𝑝 ∈ 𝒦, 𝑞 ∈ ℒ and 

𝒦 ∩ ℒ = ∅. 

Proposition 6.2.11 

For every 𝑇2
𝐴 A-TS (𝒳, 𝒯), the N-TS (𝒳, 𝒯 ∪ ∅) is 𝑇2

𝑁.  

Proof: By theorem 1.6.18. 

Proposition 6.2.12 

For every 𝑇2
𝐴 ATS (𝒳, 𝒯), the N-TS (𝒳, 𝒯 ∪ 𝒳) is 𝑇2

𝑁. 

Proof: By theorem 1.6.19. 

Proposition 6.2.13 

Every sub-space of an 𝑇2
𝐴 space is an 𝑇2

𝐴 space.       

Proof: 

Let us assume that the A-TS (𝒳, 𝒯𝑥) is 𝑇2
𝐴 and let (𝒜, 𝒯𝒜) is a sub-space of the space 

(𝒳, 𝒯𝑥). Let 𝑦1 ≠ 𝑦2 are two arbitrary points in 𝒜. Then 𝒜 being a subspace of 𝒳, so 

𝑦1, 𝑦2 will be arbitrary points in 𝒳 also and by virtue of being a 𝑇2
𝐴 space there will be 

two A-OSs 𝒫𝑦1
, 𝒫𝑦2

 in 𝒯𝑥  so that 𝑦1 ∈ 𝒫𝑦1
, 𝑦2 ∈ 𝒫𝑦2

 with 𝒫𝑦1
∩ 𝒫𝑦2

= ∅.  Now, in the 

sub-space 𝒜 we will have A-OSs 𝒫1 = 𝒫𝑦1
∩ 𝒜 and 𝒫2 = 𝒫𝑦2

∩ 𝒜 so that 𝑦1 ∈ 𝒫1 and 

𝑦2 ∈ 𝒫2 and 𝒫1 ∩ 𝒫2 = ∅. Thus, the sub-space (𝒜, 𝒯𝒜) is an 𝑇2
𝐴 space.  

Proposition 6.2.14 

Every 𝑇2
𝐴 space is an 𝑇1

𝐴 space. 

Proof: 
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Let the A-TS (𝒳, 𝒯) be 𝑇2
𝐴, then if 𝑝 ≠ 𝑞 ∈ 𝒳 there exist 𝒬, ℛ ∈ 𝒯so that 𝑝 ∈ 𝒬, 𝑞 ∈ ℛ 

and 𝒬 ∩ ℛ = ∅. The conditions 𝒬 ∩ ℛ = ∅ and 𝑝 ∈ 𝒬 results in 𝑞 ∉ 𝒬 and further 𝑞 ∈

ℛ with 𝒬 ∩ ℛ = ∅ results in 𝑝 ∉ ℛ and hence the space (𝒳, 𝒯) is also a 𝑇1
𝐴 space. 

 

Proposition 6.2.15 

If a one-one, onto, A-O and anti-continuous mapping 𝑓  exists between two A-TSs 

(𝒳, 𝒯𝑥) and (𝒴, 𝒯𝑦) and if (𝒳, 𝒯𝑥) is 𝑇2
𝐴 then the space (𝒴, 𝒯𝑦) is also 𝑇2

𝐴.   

Proof: 

Let (𝒳, 𝒯𝑥) be 𝑇2
𝐴 and 𝑓 be a one-one and A-O mapping of (𝒳, 𝒯𝑥) onto (𝒴, 𝒯𝑦). Let us 

assume two distinct points 𝑦1, 𝑦2 ∈ 𝒴. Now, since 𝑓 is onto, there will exist elements 

𝑥1 ≠ 𝑥2 ∈ 𝒳 so that 𝑓(𝑥1) = 𝑦1  and  𝑓(𝑥2) = 𝑦2 . Again, since (𝒳, 𝒯𝑥) is a 𝑇2
𝐴space, 

there exist 𝒪𝑥, 𝒪𝑦 ∈ 𝒯𝑥  so that 𝑥 ∈ 𝒪𝑥  and, 𝑦 ∈ 𝒪𝑦  and 𝒪𝑥 ∩ 𝒪𝑦 = ∅. Further, 𝑓  being 

A-O 𝑓(𝒪𝑥), 𝑓(𝒪𝑦) ∈ 𝒯𝑦  and as such, we have 𝑦1 = 𝑓(𝑥1) ∈ 𝑓(𝒪𝑥) and 𝑦2 = 𝑓(𝑥2) ∈

𝑓(𝒪𝑦)  and 𝑓(𝒪𝑥) ∩ 𝑓(𝒪𝑦) = 𝑓(𝒪𝑥 ∩ 𝒪𝑦) = 𝑓(∅) = ∅ , since 𝑓  is one-one and onto. 

Hence the space (𝒴, 𝒯𝑦) is 𝑇2
𝐴.     

Proposition 6.2.16 

If a one-one, onto, and anti-continuous mapping 𝑓 exists between two A-TSs (𝒳, 𝒯𝑥) 

and (𝒴, 𝒯𝑦) and if (𝒴, 𝒯𝑦) is 𝑇2
𝐴 then the space (𝒳, 𝒯𝑥) is also 𝑇2

𝐴.   

Proof: 

Assume 𝑥1 ≠ 𝑥2 ∈ 𝒳  and since 𝑓  is one-one, so 𝑥1 ≠ 𝑥2  means 𝑓(𝑥1) ≠ 𝑓(𝑥2) . 

Suppose that 𝑓(𝑥1) = 𝑦1 and 𝑓(𝑥2) = 𝑦2or, 𝑥1 = 𝑓−1(𝑦1)and 𝑥2 = 𝑓−1(𝑦2).  

Then 𝑦1 ≠ 𝑦2 ∈ 𝒴 and now since (𝒴, 𝒯𝑦) is a 𝑇2
𝐴 space, we have 𝑄1, 𝑄2 ∈ 𝒯𝑦   so that 

𝑦1 ∈ 𝑄1 and 𝑦2 ∈ 𝑄2 and 𝑄1 ∩ 𝑄2 = ∅.  

Again, since 𝑓 is anti-continuous 𝑓−1(𝑄1), 𝑓−1(𝑄1) ∈ 𝒯𝑥 so that:  

𝑦1 ∈ 𝑄1 ⇒ 𝑓−1(𝑦1) ∈ 𝑓−1(𝑄1) ⇒ 𝑥1 ∈ 𝑓−1(𝑄1).  

Similarly, we have: 𝑦2 ∈ 𝑄2 ⇒ 𝑓−1(𝑦2) ∈ 𝑓−1(𝑄2) ⇒ 𝑥2 ∈ 𝑓−1(𝑄2) and moreover, we 

have: 𝑓−1(𝑄1) ∩ 𝑓−1(𝑄2) =  𝑓−1(𝑄1 ∩ 𝑄2) = 𝑓−1(∅) = ∅ . Thus, for two arbitrary 

points 𝑥1 ≠ 𝑥2 ∈ 𝒳 , we have 𝑓−1(𝑄1), 𝑓−1(𝑄1) ∈ 𝒯𝑥  so that 𝑥1 ∈ 𝑓−1(𝑄1)  and 𝑥2 ∈

𝑓−1(𝑄2) and 𝑓−1(𝑄1) ∩ 𝑓−1(𝑄2) = ∅. Hence the space (𝒳, 𝒯𝑥) is also 𝑇2
𝐴. 
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Definition 6.2.4 

An A-TS (𝒳, 𝒯) will be called an anti-regular space if corresponding to all A-CS 𝒞 and 

𝑥 ∉ 𝒞  there exist 𝒪𝑐 , 𝒪𝑥 ∈ 𝒯  so that: 𝒞 ⊆ 𝒪𝑐 ,  𝑥 ∈ 𝒪𝑥  and 𝒪𝑐 ∩ 𝒪𝑥 = ∅ . If the A-TS 

(𝒳, 𝒯) is also 𝑇1
𝐴 then the A-TS is called an anti-𝑇3 space (𝑇3

𝐴 in short). 

Proposition 6.2.17 

For every anti-regular A-TS (𝒳, 𝒯), the N-TS (𝒳, 𝒯 ∪ ∅) is Nu-regular. 

Proof: By theorem 1.6.18. 

Proposition 6.2.18 

For every anti-regular A-TS (𝒳, 𝒯), the N-TS (𝒳, 𝒯 ∪ 𝒳) is Nu-regular. 

Proof: By theorem 1.6.19. 

Proposition 6.2.19 

Every sub-space of an anti-regular space is anti-regular.  

Proof: 

Assume (𝒜, 𝒯𝒜)  to be a sub-space of an anti-regular A-TS (𝒳, 𝒯)  and let 𝒫  be a 

random 𝒯𝒜-A-CS and 𝑦 be an arbitrary point in 𝒜 so that 𝑦 ∉ 𝒫. Now, by proposition 

4.5.1 (ii) we have 𝒫𝒴
𝐴𝑛𝑡𝑖−𝑐𝑙 = 𝒫𝒳

𝐴𝑛𝑡𝑖−𝑐𝑙 ∩ 𝒜 where 𝒫𝒳
𝐴𝑛𝑡𝑖−𝑐𝑙  is the anti-closure of 𝒫in 

the space (𝒳, 𝒯𝑥).  

Also 𝒫 being A-C in 𝒯𝒜, 𝒫𝒜
𝐴𝑛𝑡𝑖−𝑐𝑙 = 𝒫 and so we have: 𝒫 = 𝒫𝒳

𝐴𝑛𝑡𝑖−𝑐𝑙 ∩ 𝒜 ............ (1) 

Now, 𝑦 ∉ 𝒫 ⇒ 𝑦 ∉ 𝒫𝒳
𝐴𝑛𝑡𝑖−𝑐𝑙 ∩ 𝒜 ⇒ 𝑦 ∉ 𝒫𝒳

𝐴𝑛𝑡𝑖−𝑐𝑙 as 𝑦 ∈ 𝒜. 

Now, by proposition 4.5.1 (i) and (1) we have 𝒫𝒳
𝐴𝑛𝑡𝑖−𝑐𝑙 to be A-C with respect to 𝒯𝑥 and 

we have a point 𝑦 ∉ 𝒫𝒳
𝐴𝑛𝑡𝑖−𝑐𝑙 and so by the anti-regularity of the space (𝒳, 𝒯𝑥), we have 

A-OSs 𝒬  and ℛ  in 𝒯𝑥  so that 𝑦 ∈ 𝒬 ,𝒫𝒳
𝐴𝑛𝑡𝑖−𝑐𝑙 ⊆ ℛ  and 𝒬 ∩ ℛ = ∅ . Now, 𝑦 ∈ 𝒜  with 

𝑦 ∈ 𝒬 ⇒ 𝑦 ∈ 𝒬 ∩ 𝒜  and 𝒫𝒳
𝐴𝑛𝑡𝑖−𝑐𝑙 ⊆ ℛ ⇒ 𝒫𝒳

𝐴𝑛𝑡𝑖−𝑐𝑙 ∩ 𝒜 ⊆ ℛ ∩ 𝒜 ⇒ 𝒫 ⊆ ℛ ∩ 𝒜 , 

from (1). Also, (𝒬 ∩ 𝒜) ∩ (ℛ ∩ 𝒜) = (𝒬 ∩ ℛ) ∩ 𝒜 = ∅ ∩ 𝒜 = ∅.  

If we assign𝒬 ∩ 𝒜 = ℳandℛ ∩ 𝒜 = 𝒩, then ℳ and 𝒩 are A-OSs in 𝒯𝒜 since 𝒬 and 

ℋ are AO in 𝒯𝑥.  Thus, for random A-CS 𝒫 in 𝒜 and random point𝑦 ∉ 𝒫, satisfying 

𝑦 ∈ ℳ, 𝒫 ⊆ 𝒩 and ℳ ∩ 𝒩 = ∅ thereby showing that (𝒜, 𝒯𝒜) is anti-regular.            

Proposition 6.2.20 

A sub-space (𝒴, 𝒯𝑦) of a 𝑇3
𝐴 space (𝒳, 𝒯𝑥) is also 𝑇3

𝐴.  
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Proof: 

An 𝑇3
𝐴 space is an 𝑇1

𝐴 space and is also anti-regular. By proposition 6.2.7 a sub-space of 

an 𝑇1
𝐴 is an 𝑇1

𝐴 space and by proposition 6.2.19 a sub-space of an anti-regular space is 

anti-regular. Thus, if (𝒳, 𝒯𝑥)  is 𝑇3
𝐴  then it is both 𝑇1

𝐴  and anti-regular, so by 

propositions 6.2.7 and 6.2.19, the sub-space (𝒴, 𝒯𝑦) of (𝒳, 𝒯𝑥) is also an 𝑇3
𝐴 space. 

Proposition 6.2.21 

Every 𝑇3
𝐴 space is also an 𝑇2

𝐴 space. 

Proof: 

If the A-TS (𝒳, 𝒯) is 𝑇3
𝐴, then it is 𝑇1

𝐴 and anti-regular. For 𝑥1 ≠ 𝑥2 ∈ 𝒳 we have by 

virtue of 𝑇1
𝐴 space there exist A-OSs 𝒪1 and 𝒪2 so that 𝑥1 ∈ 𝒪1 ∖ 𝒪2 and 𝑥2 ∈ 𝒪2 ∖ 𝒪1.  

Now, 𝑥1 ∈ 𝒪1  means 𝑥1 ∉ 𝑐(𝒪1)  and 𝑐(𝒪1)  is a A-CS and hence by virtue of anti-

regularity there exist A-OSs 𝒫 and 𝒬 so that 𝑥1 ∈ 𝒫, 𝑐(𝒪1) ⊆ 𝒬 and 𝒫 ∩ 𝒬 = ∅. 

Now, 𝑥2 ∈ 𝒪2 ∖ 𝒪1 ⇒ 𝑥2 ∉ 𝒪1 ⇒ 𝑥2 ∈ 𝑐(𝒪1) ⊆ 𝒬 ⇒ 𝑥2 ∈ 𝒬.  

Thus, for arbitrary 𝑥1 ≠ 𝑥2 ∈ 𝒳, we have A-OSs 𝒫 and 𝒬 satisfying 𝑥1 ∈ 𝒫, 𝑥2 ∈ 𝒬 and 

𝒫 ∩ 𝒬 = ∅ which shows that the space (𝒳, 𝒯) is also 𝑇2
𝐴.             

Proposition 6.2.22 

For every 𝑇3
𝐴 A-TS (𝒳, 𝒯), the N-TS (𝒳, 𝒯 ∪ ∅) is 𝑇3

𝑁.  

Proof: By theorem 1.6.18. 

Proposition 6.2.23 

For every 𝑇3
𝐴 A-TS (𝒳, 𝒯), the N-TS (𝒳, 𝒯 ∪ 𝒳) is 𝑇3

𝑁. 

Proof: By theorem 1.6.19. 

Definition 6.2.5 

An A-TS (𝒳, 𝒯)  will be called an anti-normal space if corresponding to a pair of 

disjoint A-CSs 𝒞  and 𝒟 , there exist 𝒪𝐶 , 𝒪𝐷 ∈ 𝒯  so that: 𝒞 ⊆ 𝒪𝐶 ,  𝒟 ∈ 𝒪𝐷  and 𝒪𝐶 ∩

𝒪𝐷 = ∅. If the A-TS is also 𝑇1
𝐴 then it is called an anti-𝑇4 space (𝑇4

𝐴 in short). 

Proposition 6.2.24 

For every anti-normal A-TS (𝒳, 𝒯), the N-TS (𝒳, 𝒯 ∪ ∅) is Nu-normal. 

Proof: By theorem 1.6.18. 
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Proposition 6.2.25 

For every anti-normal ATS (𝒳, 𝒯), the N-TS (𝒳, 𝒯 ∪ 𝒳) is Nu-normal. 

Proof: By theorem 1.6.19. 

Proposition 6.2.26 

If an A-TS (𝒳, 𝒯)  is anti-normal then for arbitrary A-CS ℱ  and an A-OS 𝒢  which 

contain ℱ, there exists an A-OS 𝒱 so that ℱ ⊆ 𝒱 and 𝒱𝐴𝑛𝑡𝑖−𝑐𝑙 ⊆ 𝒢. 

Proof: 

Let us first assume that the space (𝒳, 𝒯) is anti-normal with ℱ as some A-CS and 𝒢 as 

some A-OS in 𝒯 so that ℱ ⊂ 𝒢. Then 𝒸𝒢 is A-CS and ℱ ∩ 𝒸𝒢 = ∅. Thus, ℱ and 𝒸𝒢 are 

disjoint A-CSs and hence by the property of anti-normality of the space there will be 

two A-OSs 𝒦 and ℒ satisfying 𝒸𝒢 ⊆ 𝒦, ℱ ⊆ ℒ and 𝒦 ∩ ℒ = ∅.  

Now, 𝒦 ∩ ℒ = ∅ ⇒ ℒ ⊆ 𝒸𝒦, with 𝒸𝒦 being A-CS.  

Also, ℒ ⊆ 𝒸𝒦 ⇒ ℒ𝐴𝑛𝑡𝑖−𝑐𝑙 ⊆ (𝒸𝒦)𝐴𝑛𝑡𝑖−𝑐𝑙 = 𝒸𝒦, 𝒸𝒦 being A-CS, proposition 4.3.2.  

Also, 𝒸𝒢 ⊆ 𝒦 ⇒ 𝒸𝒦 ⊆ 𝒢 and hence ℒ𝐴𝑛𝑡𝑖−𝑐𝑙 ⊆ 𝒢.  

Thus, we get ℱ ⊆ ℒ and ℒ𝐴𝑛𝑡𝑖−𝑐𝑙 ⊆ 𝒢. 

Proposition 6.2.27 

Every 𝑇4
𝐴 space is necessarily a 𝑇3

𝐴 space. 

Proof: 

Let the A-TS (𝒳, 𝒯) be 𝑇4
𝐴, then it is 𝑇1

𝐴 and anti-normal. Thus, it would be sufficient to 

show that (𝒳, 𝒯)  is anti-regular. Now, since 𝒳  is anti-normal, so for two random 

disjoint A-CSs ℱ and 𝒢, we have A-OSs 𝒦, ℒ satisfying ℱ ⊆ 𝒦, 𝒢 ⊆ ℒ and 𝒦 ∩ ℒ = ∅.     

Now, if we can assume the same A-CS ℱ in 𝒳, which was also arbitrarily chosen and a 

random point 𝑥 in 𝒢 so that 𝑥 ∉ ℱ as ℱ ∩ 𝒢 = ∅ then we have the A-OSs 𝒦 and ℒ that 

satisfy 𝑥 ∈ ℒ and ℱ ⊆ 𝒦 and 𝒦 ∩ ℒ = ∅ thereby showing that (𝒳, 𝒯) is also 𝑇3
𝐴.     

Proposition 6.2.28 

For every 𝑇4
𝐴 ATS (𝒳, 𝒯), the N-TS (𝒳, 𝒯 ∪ ∅) is 𝑇4

𝑁.  

Proof: By theorem 1.6.18. 

Proposition 6.2.29 

For every 𝑇4
𝐴 ATS (𝒳, 𝒯), the N-TS (𝒳, 𝒯 ∪ 𝒳) is 𝑇4

𝑁.  

Proof: By theorem 1.6.19. 


