CHAPTER 6 # Separation Axioms in Neutro-Topological and Anti-Topological Spaces In this chapter some separation axioms are studied in N-TSs as well as in A-TSs and various hereditary properties that are generally true in topological spaces are observed minutely and various comparisons are made among the various spaces that have been introduced in N-TSs and A-TSs. Many of the hereditary and other relevant properties are found to follow in the N-TS and A-TS with certain exceptions, the reasons for which have been given. # 6.1 Separation Axioms in Neutro-Topological Spaces #### **Definition 6.1.1** A N-TS (X,T) will be called a Nu-T₀ space $(T_0^N \text{ in short})$ if for arbitrary elements $m \neq n$ there exists $Q \in T$ for which, if $m \in Q$, $n \notin Q$ or, if $n \in Q$, $m \notin Q$. In other words, for any set of two unequal points in the space there will exist a N-OS that contains one of the points but not the other. ## **Proposition 6.1.1** Let a N-TS (X,T) be a T_0^N space. Then for distinct points: $x,y \in X$, we have: $[\{x\}]^{Nu-cl} \cap [\{y\}]^{Nu-cl} = \emptyset$. #### **Proof:** Let $(\mathcal{X}, \mathcal{T})$ be T_0^N and $x \neq y$ be arbitrary elements in \mathcal{X} , then there will be $\wp \in \mathcal{T}$ so that whenever $x \in \wp$, $y \notin \wp$ or, whenever $y \in \wp$, $x \notin \wp$. Now, whenever $x \in \mathcal{D}$, $\{x\} \subseteq \mathcal{D}$ and whenever $y \notin \mathcal{D}$, $\{y\} \not\subset \mathcal{D}$ Again, whenever $\{x\} \subseteq \wp$, $[\{x\}]^{Nu-cl} \subseteq \wp^{Nu-cl}$ by **proposition 2.3.3** (iii) Also, $\{y\} \not\subset \wp \Rightarrow [\{y\}]^{Nu-cl} \not\subset \wp^{Nu-cl}$. Thus, $[\{x\}]^{Nu-cl} \cap [\{y\}]^{Nu-cl} = \emptyset$. The neutro-topology part of this chapter has been communicated to an international journal for publication. # Corollary 6.1.1 Let a N-TS (X,T) be a T_0^N space. Then for arbitrary $a \neq b \in X$, $a \notin [\{b\}]^{Nu-cl}$ and $b \notin [\{a\}]^{Nu-cl}$. # **Proposition 6.1.2** For every GTS (X, T), which is T_0 , the N-TS $(X, T \setminus \emptyset)$ is T_0^N . **Proof**: By *theorem 1.6.15*, if $(\mathcal{X}, \mathcal{T})$ is a *GTS* then $(\mathcal{X}, \mathcal{T} \setminus \emptyset)$ is a *N-TS*. # **Proposition 6.1.3** For every GTS (X, T), which is T_0 , the N-TS $(X, T \setminus X)$ is T_0^N . **Proof**: By *theorem 1.6.16*, if (X,T) is a *GTS* then $(X,T \setminus X)$ is a *N-TS*. ## **Remark 6.1.1** **Propositions 6.1.2** and **6.1.3** show that a T_0^N space can be deduced from every T_0 space. # **Proposition 6.1.4** If a one-one, onto, and N-O mapping f exist between two N-TSs (X, T_x) and (Y, T_y) and if (X, T_x) is T_0^N then the space (Y, T_y) is also a T_0^N . # **Proof:** When $(\mathcal{X}, \mathcal{T}_x)$ is T_0^N and f is a one-one, N-O mapping, let us assume two distinct points $y_1 \neq y_2 \in \mathcal{Y}$. Now, since f is onto, there will be members $x_1 \neq x_2 \in \mathcal{X}$ so that $f(x_1) = y_1$ and $f(x_2) = y_2$. Again, since $(\mathcal{X}, \mathcal{T}_x)$ is a T_0^N space, there is a $\emptyset \in \mathcal{T}_x$ which contains one of x_1 or x_2 only and not the other. If $x_1 \in \emptyset$ then $f(x_1) \in f(\emptyset) \in \mathcal{T}_y$ since f is a N-O map. Thus, $y_1 \in f(\emptyset) \in \mathcal{T}_y$ which shows that $f(\emptyset) \in \mathcal{T}_y$ contains y_1 but not y_2 and hence the space $(\mathcal{Y}, \mathcal{T}_y)$ is also T_0^N since the points y_1 and y_2 are distinct and moreover arbitrary. #### **Definition 6.1.2** A N-TS (X,T) will be called as Nu-T₁ $(T_1^N \text{ in short})$ if for each arbitrary pair of points $p \neq q$ in X there exists $P,Q \in T$ which satisfy $p \in P \setminus Q$ and, $q \in Q \setminus P$. #### **Proposition 6.1.5** If the singleton subsets of a N-TS (X,T) are N-C then the N-TS will be a T_1^N space. #### **Proof:** For two arbitrary points: x, y in \mathcal{X} , if it is assumed that the singleton $\{x\} = \mathcal{A} \subseteq \mathcal{X}$, is a N-CS, which means $c\mathcal{A} \in \mathcal{T}$ with $x \notin c\mathcal{A}$ but $y \in c\mathcal{A}$. Analogously, $c(\mathcal{B} = \{y\}) \in \mathcal{T}$ with $y \notin c\mathcal{B}$ but $x \in c\mathcal{B}$. Hence, if we assume: $\mathcal{P} = c\mathcal{B}$ and $\mathcal{Q} = c\mathcal{A}$, then the space $(\mathcal{X}, \mathcal{T})$ will satisfy the condition for being a T_1^N space if the singleton subsets are closed. # **Remark 6.1.2** The converse of *proposition 6.1.5* is however not true and can be observed from the following example: Let us take the set: $\mathcal{X} = \{1,2,3,4,5\}$, and $\mathcal{T} = \{\emptyset, \{1\}, \{1,2\}, \{1,5\}, \{2,3\}, \{3,4\}, \{4,5\}\}$, then $(\mathcal{X}, \mathcal{T})$ is a *N-TS*. For any pair of distinct points, the condition for T_1^N is satisfied but none of the singleton subsets of \mathcal{X} are *N-C*. However, as seen in the *proposition 6.1.5*, when the singletons are closed then the space is a T_1^N space. # **Proposition 6.1.6** If a one-one, onto, and N-O mapping f exists between two N-TSs (X, T_x) and (Y, T_y) and if (X, T_x) is T_1^N then (Y, T_y) is also a T_1^N space. # **Proof:** When $(\mathcal{X}, \mathcal{T}_x)$ is T_1^N and f is a one-one and N-O mapping, let us assume two distinct points $q_1 \neq q_2 \in \mathcal{Y}$. Now, since f is onto, there will be distinct members $p_1, p_2 \in \mathcal{X}$ that satisfy $f(p_1) = q_1$ and $f(p_2) = q_2$. Again, $(\mathcal{X}, \mathcal{T}_x)$ being a T_1^N space, there are $\mathcal{P}, \mathcal{Q} \in \mathcal{T}_x$ which satisfy $m \in \mathcal{P} \setminus \mathcal{Q}$ and, $n \in \mathcal{Q} \setminus \mathcal{P}$ where m and n are some random points in the space. Further f being a N-O map, $f(\mathcal{Q}), f(\mathcal{Q}) \in \mathcal{T}_y$ and as such, we have $q_1 = f(p_1) \in f(\mathcal{P}) \setminus f(\mathcal{Q})$ and $q_2 = f(p_2) \in f(\mathcal{Q}) \setminus f(\mathcal{P})$ thereby showing that $(\mathcal{Y}, \mathcal{T}_y)$ is also a T_1^N space, the points q_1 and q_2 being distinct and arbitrary. # **Proposition 6.1.7** Every sub-space of a T_1^N space is also a T_1^N space. # **Proof:** Let us assume that the *N-TS* $(\mathcal{X}, \mathcal{T}_x)$ is T_1^N and say, $(\mathcal{Y}, \mathcal{T}_y)$ is a sub-space of the space $(\mathcal{X}, \mathcal{T}_x)$ and say, $y_1 \neq y_2$ are two arbitrary points in \mathcal{Y} . Then \mathcal{Y} being a sub-space of \mathcal{X} , so y_1, y_2 will be arbitrary points in \mathcal{X} and by virtue of being a T_1^N space there will be two *N-OSs* $\mathcal{O}_{y_1}, \mathcal{O}_{y_2}$ in \mathcal{T}_x so that $y_1 \in \mathcal{O}_{y_1} \setminus \mathcal{O}_{y_2}$ and $y_2 \in \mathcal{O}_{y_2} \setminus \mathcal{O}_{y_1}$. Now, in the sub- space \mathcal{Y} we will have $N\text{-}OSs\ \wp_1=\wp_{y_1}\cap\mathcal{Y}$ and $\wp_2=\wp_{y_2}\cap\mathcal{Y}$ so that $y_1\in\wp_1\setminus\wp_2$ and $y_2\in\wp_2\setminus\wp_1$ and as such the sub-space $(\mathcal{Y},\mathcal{T}_{\mathcal{Y}})$ becomes a T_1^N space. # **Proposition 6.1.8** Every T_1^N space is also a T_0^N space. #### **Proof:** Assume that a *N-TS* $(\mathcal{X}, \mathcal{T})$ is T_1^N , then for arbitrary set of two unequal points p, q there are $\mathcal{P}, \mathcal{Q} \in \mathcal{T}$ that satisfy $p \in \mathcal{P} \cap c\mathcal{Q}$ and, $q \in \mathcal{Q} \cap c\mathcal{P}$ and this means if $p \in \mathcal{P}, q \notin \mathcal{P}$ and if $q \in \mathcal{Q}, p \notin \mathcal{Q}$. Hence $(\mathcal{X}, \mathcal{T})$ is T_0^N . # **Proposition 6.1.9** For every T_1 GTS (X, T), the N-TS $(X, T \setminus \emptyset)$ is T_1^N . **Proof**: By *theorem 1.6.15*, if $(\mathcal{X}, \mathcal{T})$ is a *GTS* then $(\mathcal{X}, \mathcal{T} \setminus \emptyset)$ is a *N-TS*. # **Proposition 6.1.10** For every T_1 GTS (X, \mathcal{T}) , the N-TS $(X, \mathcal{T} \setminus X)$ is T_1^N . **Proof**: By *theorem 1.6.16*, if (X, T) is a *GTS* then $(X, T \setminus X)$ is a *N-TS*. #### **Definition 6.1.3** A N-TS (X,T) will be called a Nu-T₂ space $(T_2^N \text{ in short})$ if for an arbitrary set of two unequal points m and n there exist $\mathcal{P}, Q \in \mathcal{T}$ satisfying $m \in \mathcal{P}, n \in Q$ and $\mathcal{P} \cap Q = \emptyset$. # **Proposition 6.1.11** For every T_2 GTS (X, \mathcal{T}) , the N-TS $(X, \mathcal{T} \setminus \emptyset)$ is T_2^N . **Proof**: By *theorem 1.6.15*, if $(\mathcal{X}, \mathcal{T})$ is a *GTS* then $(\mathcal{X}, \mathcal{T} \setminus \emptyset)$ is a *N-TS*. # **Proposition 6.1.12** For every T_2 GTS $(\mathcal{X}, \mathcal{T})$, the N-TS $(\mathcal{X}, \mathcal{T} \setminus \mathcal{X})$ is T_2^N . **Proof**: By *theorem 1.6.16*, if (X, T) is a *GTS* then $(X, T \setminus X)$ is a *N-TS*. #### **Proposition 6.1.13** Every sub-space of a T_2^N space is also a T_2^N space. # **Proof:** Let us assume that the *N-TS* $(\mathcal{X}, \mathcal{T}_{\mathcal{X}})$ is \mathcal{T}_{2}^{N} and let $(\mathcal{Y}, \mathcal{T}_{\mathcal{Y}})$ be a sub-space of $(\mathcal{X}, \mathcal{T}_{\mathcal{X}})$ and say, $y_{1} \neq y_{2}$ are two random points in \mathcal{Y} . Then \mathcal{Y} being a subspace of \mathcal{X} , so y_{1}, y_{2} happens to be random points in \mathcal{X} and by virtue of being a T_2^N space there will be two $N\text{-}OSs\ \wp_{y_1}, \wp_{y_2}$ in \mathcal{T}_x so that so that $y_1 \in \wp_{y_1}, y_2 \in \wp_{y_2}$ with $\wp_{y_1} \cap \wp_{y_2} = \emptyset$. Now, in the sub-space \mathcal{Y} we will have $N\text{-}OSs\ \wp_1 = \wp_{y_1} \cap \mathcal{Y}$ and $\wp_2 = \wp_{y_2} \cap \mathcal{Y}$ so that $y_1 \in \wp_1$ and $y_2 \in \wp_2$ and $\wp_1 \cap \wp_2 = \emptyset$. Thus, the sub-space $(\mathcal{Y}, \mathcal{T}_y)$ is also a T_2^N space. # **Proposition 6.1.14** Every T_2^N space is also a T_1^N space. #### **Proof:** Let the *N-TS* $(\mathcal{X}, \mathcal{T})$ be a T_2^N space, then for $x \neq y \in \mathcal{X}$ there exist $\mathcal{L}, \mathcal{M} \in \mathcal{T}$ so that $x \in \mathcal{L}, y \in \mathcal{M}$ and $\mathcal{L} \cap \mathcal{M} = \emptyset$. The conditions $\mathcal{L} \cap \mathcal{M} = \emptyset$ and $x \in \mathcal{L}$ results in $y \notin \mathcal{L}$ and further $y \in \mathcal{M}$ with $\mathcal{L} \cap \mathcal{M} = \emptyset$ results in $x \notin \mathcal{M}$ and hence the space $(\mathcal{X}, \mathcal{T}_x)$ which is a T_2^N space is also a T_1^N space. # **Proposition 6.1.15** In a T_2^N space, the intersection of all N-C Nu-nhds of any point in the space is necessarily a singleton. #### **Proof:** Let the *N-TS* $(\mathcal{X}, \mathcal{T})$ be T_2^N , then for $m \neq n \in \mathcal{X}$ there are $\mathcal{E}, \mathcal{F} \in \mathcal{T}$ that satisfy $m \in \mathcal{M}$, $n \in \mathcal{N}$ and $\mathcal{M} \cap \mathcal{N} = \emptyset$. Now, $m \in \mathcal{M}$ and $\mathcal{M} \cap \mathcal{N} = \emptyset \Rightarrow m \in \mathcal{M} \subseteq c(\mathcal{N})$. Thus $c(\mathcal{N})$ is a *N-C* Nu-nhd of the point m and $n \notin c(\mathcal{N})$. Thus, the point n will not belong to the intersection of the *N-C* Nu-nhds of m and since the point n happens to be arbitrary, the intersection in context will only consist of the single point m or the singleton $\{m\}$. # **Proposition 6.1.16** If a one-one, onto, N-O and Nu-continuous mapping f exists between two N-TSs (X, T_x) and (Y, T_y) and if (X, T_x) is T_2^N then the space (Y, T_y) is also T_2^N . #### **Proof:** Let $(\mathcal{X}, \mathcal{T}_x)$ be T_2^N and f be a one-one and N-O mapping of $(\mathcal{X}, \mathcal{T}_x)$ onto $(\mathcal{Y}, \mathcal{T}_y)$, let us assume two distinct points $y_1 \neq y_2 \in \mathcal{Y}$. Now, since f is onto, there will be elements $x_1 \neq x_2 \in \mathcal{X}$ so that $f(x_1) = y_1$ and $f(x_2) = y_2$. Again, since $(\mathcal{X}, \mathcal{T}_x)$ is a T_2^N space, there are $\mathcal{O}_x, \mathcal{O}_y \in \mathcal{T}_x$ so that $x \in \mathcal{O}_x$ and, $y \in \mathcal{O}_y$ and $\mathcal{O}_x \cap \mathcal{O}_y = \emptyset$. Also, since f is N-O so there exist $f(\mathcal{O}_x), f(\mathcal{O}_y) \in \mathcal{T}_y$ so that $y_1 = f(x_1) \in f(\mathcal{O}_x)$, $y_2 = f(x_2) \in f(\mathcal{O}_y)$ and $f(\mathcal{O}_x) \cap f(\mathcal{O}_y) = f(\mathcal{O}_x \cap \mathcal{O}_y) = f(\emptyset) = \emptyset$, since f is one-one and onto. Hence the space $(\mathcal{Y}, \mathcal{T}_y)$ is \mathcal{T}_2^N . # **Proposition 6.1.17** If a one-one, onto, and Nu-continuous mapping f exists between two N-TSs $(\mathcal{X}, \mathcal{T}_x)$ and $(\mathcal{Y}, \mathcal{T}_y)$ and if $(\mathcal{Y}, \mathcal{T}_y)$ is T_2^N then the space $(\mathcal{X}, \mathcal{T}_x)$ is also T_2^N . # **Proof:** Assume $x_1 \neq x_2 \in \mathcal{X}$ then since f is one-one, so $x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$. Suppose that $f(x_1) = y_1$ and $f(x_2) = y_2$ or, $x_1 = f^{-1}(y_1)$ and $x_2 = f^{-1}(y_2)$. Then for $y_1 \neq y_2 \in \mathcal{Y}$ and since $(\mathcal{Y}, \mathcal{T}_y)$ is a \mathcal{T}_2^N space, we have $Q_1, Q_2 \in \mathcal{T}_y$ so that $y_1 \in Q_1$ and $y_2 \in Q_2$ and $Q_1 \cap Q_2 = \emptyset$. Again, since f is Nu-continuous $f^{-1}(Q_1), f^{-1}(Q_1) \in \mathcal{T}_x$ so that we have: $y_1 \in Q_1 \implies f^{-1}(y_1) \in f^{-1}(Q_1)$ which in turn implies $x_1 \in f^{-1}(Q_1)$. Similarly, we have: $y_2 \in Q_2 \implies f^{-1}(y_2) \in f^{-1}(Q_2)$ which in turn implies $x_2 \in f^{-1}(Q_2)$ and moreover, we have: $f^{-1}(Q_1) \cap f^{-1}(Q_2) = f^{-1}(Q_1 \cap Q_2) = f^{-1}(\emptyset) = \emptyset$. Thus, for two arbitrary points $x_1 \neq x_2 \in \mathcal{X}$, we have $f^{-1}(Q_1), f^{-1}(Q_1) \in \mathcal{T}_x$ so that $x_1 \in f^{-1}(Q_1)$ and $x_2 \in f^{-1}(Q_2)$ and $f^{-1}(Q_1) \cap f^{-1}(Q_2) = \emptyset$. Hence the space $(\mathcal{X}, \mathcal{T}_x)$ is also \mathcal{T}_2^N . #### **Definition 6.1.4** A N-TS (X,T) will be called a Nu-regular space if corresponding to any N-CS \mathcal{C} and $x \notin \mathcal{C}$ there are $\mathcal{O}_c, \mathcal{O}_x \in \mathcal{T}$ so that: $\mathcal{C} \subseteq \mathcal{O}_c, x \in \mathcal{O}_x$ and $\mathcal{O}_c \cap \mathcal{O}_x = \emptyset$. If the Nu-regular N-TS (X,T) is also T_1^N then this N-TS is called a Nu-T₃ space (T_3^N) in short. That is, a T_3^N space is a Nu-regular space satisfying the conditions for a T_1^N space. # **Proposition 6.1.18** For every regular GTS (X,T), the N-TS $(X,T \setminus \emptyset)$ is Nu-regular. **Proof**: By *theorem 1.6.15*, if $(\mathcal{X}, \mathcal{T})$ is a *GTS* then $(\mathcal{X}, \mathcal{T} \setminus \emptyset)$ is a *N-TS*. # **Proposition 6.1.19** For every regular GTS (X,T), the N-TS $(X,T \setminus X)$ is Nu-regular. **Proof**: By *theorem 1.6.16*, if $(\mathcal{X}, \mathcal{T})$ is a *GTS* then $(\mathcal{X}, \mathcal{T} \setminus \mathcal{X})$ is a *N-TS*. # **Proposition 6.1.20** For a Nu-regular N-TS (X,T), for arbitrary $x \in X$ and random Nu-nhd N of x, there will be a Nu-nhd Q of x so that $Q^{Nu-cl} \subseteq N$. # **Proof:** Let the space be Nu-regular and assume \mathcal{N} to be a Nu-nhd of x, then there will be a N-OS O so that $x \in O \subseteq \mathcal{N}$. Now, cO is N-CS and $x \notin cO$ so by Nu-regularity of the space, we have: $\mathcal{P}, Q \in \mathcal{T}$ that satisfies $cO \subseteq \mathcal{P}, x \in Q$ and $\mathcal{P} \cap Q = \emptyset$ that leads to the fact that $Q \subseteq c\mathcal{P}$. Also, $$Q \subseteq c\mathcal{P} \Rightarrow Q^{Nu-cl} \subseteq (c\mathcal{P})^{Nu-cl}$$, by proposition 2.3.3 (iii) $\Rightarrow Q^{Nu-cl} \subseteq c\mathcal{P}$, since $c\mathcal{P}$ is N - C and by proposition 2.3.2. Also, $c\mathcal{O} \subseteq \mathcal{P} \Rightarrow c\mathcal{P} \subseteq \mathcal{O} \subseteq \mathcal{N}$ and thus: $\mathcal{Q}^{Nu-cl} \subseteq \mathcal{N}$. # **Remark 6.1.3** The converse of *proposition 6.1.20* is not always true in a *N-TS* as it would be in a *GTS*. This is because, if we assume the condition to be true in the converse part and assume \mathcal{C} to be some N-CS so that $x \notin \mathcal{C}$ then $x \in c\mathcal{C}$, with $c\mathcal{C}$ being a N-OS and so by the assumed condition there will exist a N-OS \mathcal{O} so that $x \in \mathcal{O}$ and $\mathcal{O}^{Nu-cl} \subseteq c\mathcal{C}$ which gives $\mathcal{C} \subseteq c(\mathcal{O}^{Nu-cl})$. But, since in a N-TS, \mathcal{O}^{Nu-cl} will not be always N-CS [remark 2.3.1] and remark 2.3.2]. Thus, $c(\mathcal{O}^{Nu-cl})$ is not always a N-OS and because of this the Nu-regularity of the space fails in a N-TS. #### **Proposition 6.1.21** Every T_3^N space is also a T_2^N space. # **Proof:** Let the *N-TS* $(\mathcal{X}, \mathcal{T})$ be T_3^N , then it is both T_1^N and Nu-regular. Thus, for $x_1 \neq x_2 \in \mathcal{X}$, by virtue of being T_1^N there are *N-OSs* \mathcal{O}_1 and \mathcal{O}_2 so that $x_1 \in \mathcal{O}_1 \setminus \mathcal{O}_2$ and $x_2 \in \mathcal{O}_2 \setminus \mathcal{O}_1$. Now, $x_1 \in \mathcal{O}_1$ means $x_1 \notin c(\mathcal{O}_1)$ and $c(\mathcal{O}_1)$ is a *N-CS* and hence by virtue of being Nuregular there will be *N-OSs* \mathcal{P} and \mathcal{Q} that satisfy $x_1 \in \mathcal{P}$, $c(\mathcal{O}_1) \subseteq \mathcal{Q}$ and $\mathcal{P} \cap \mathcal{Q} = \emptyset$. Now, $$x_2 \in \mathcal{O}_2 \setminus \mathcal{O}_1 \Rightarrow x_2 \notin \mathcal{O}_1 \Rightarrow x_2 \in c(\mathcal{O}_1) \subseteq \mathcal{Q} \Rightarrow x_2 \in \mathcal{Q}$$. Thus, for arbitrary $x_1 \neq x_2 \in \mathcal{X}$, we have *N-OSs* \mathcal{P} and \mathcal{Q} satisfying $x_1 \in \mathcal{P}$, $x_2 \in \mathcal{Q}$ and $\mathcal{P} \cap \mathcal{Q} = \emptyset$. Hence, the space $(\mathcal{X}, \mathcal{T})$ which is T_3^N , is also T_2^N . # **Proposition 6.1.22** If a one-one, onto, N-O and weakly Nu-continuous mapping f exists between two N-TSs (X, T_x) and (Y, T_y) and if (X, T_x) is Nu-regular then the space (Y, T_y) is also Nu-regular. # **Proof:** We assume \mathcal{C} to be N-C with respect to \mathcal{T}_y and let q to be a point in \mathcal{Y} so that $q \notin \mathcal{C}$. Now, since f is one-one and onto, $\exists p \in \mathcal{X}$ so that $f(p) = q \Leftrightarrow f^{-1}(q) = p$. Moreover, since f is weakly Nu-continuous, by **proposition 5.1.4**, $f^{-1}(\mathcal{C})$ is N-C with respect to \mathcal{T}_x . Also, $$q \notin \mathcal{C} \Rightarrow f^{-1}(q) \notin f^{-1}(\mathcal{C}) \Rightarrow p \notin f^{-1}(\mathcal{C})$$. Thus, $f^{-1}(\mathcal{C})$ is N-C in \mathcal{X} and $p \in \mathcal{X}$ such that $p \notin f^{-1}(\mathcal{C})$. Hence, by the Nu-regularity of the space \mathcal{X} , we have N- $OSs \mathcal{P}$ and Q that satisfy $p \in \mathcal{P}$, $f^{-1}(\mathcal{C}) \subseteq Q$ and $\mathcal{P} \cap Q = \emptyset$. Now, $$p \in \mathcal{P} \Rightarrow f(p) \in f(\mathcal{P}) \Rightarrow q \in f(\mathcal{P})$$ And $$f^{-1}(\mathcal{C}) \subseteq \mathcal{Q} \Rightarrow f(f^{-1}(\mathcal{C})) \subseteq f(\mathcal{Q}) \Rightarrow \mathcal{C} \subseteq f(\mathcal{Q})$$ And $$\mathcal{P} \cap \mathcal{Q} = \emptyset \Rightarrow f(\mathcal{P} \cap \mathcal{Q}) = f(\emptyset) \Rightarrow f(\mathcal{P}) \cap f(\mathcal{Q}) = \emptyset$$, since f is one-one. Also f being N-O so $f(\mathcal{P})$ and f(Q) are N-O with respect to \mathcal{T}_y . Thus, for an arbitrary member y in \mathcal{Y} and a N-CS \mathcal{C} with respect to \mathcal{T}_y so that $y \notin \mathcal{C}$, we have N-OSs $f(\mathcal{P})$ and f(Q) satisfying $y \in f(\mathcal{P})$, $\mathcal{C} \subseteq f(Q)$ and $f(\mathcal{P}) \cap f(Q) = \emptyset$ thereby showing that the space $(\mathcal{Y}, \mathcal{T}_y)$ is Nu-regular. # **Proposition 6.1.23** Every sub-space (A, T_A) of a Nu-regular space (X, T_X) , is Nu-regular. # **Proof:** Let us assume that \mathcal{F} be an arbitrary $\mathcal{T}_{\mathcal{A}}$ -N-CS and y be an arbitrary point in \mathcal{A} so that $y \notin \mathcal{F}$. Now, by *proposition 2.5.1 (ii)* we have $\mathcal{F}_{\mathcal{Y}}^{Nu-cl} = \mathcal{F}_{\mathcal{X}}^{Nu-cl} \cap \mathcal{A}$ where $\mathcal{F}_{\mathcal{X}}^{Nu-cl}$ is the N-C of \mathcal{F} in the space $(\mathcal{X}, \mathcal{T}_{\mathcal{X}})$. Also \mathcal{F} being N-C with respect to $\mathcal{T}_{\mathcal{A}}$ we have $\mathcal{F}_{\mathcal{A}}^{Nu-cl} = \mathcal{F}$ and so we have: $\mathcal{F} = \mathcal{F}_{\mathcal{X}}^{Nu-cl} \cap \mathcal{A}$(1) Now, $$y \notin \mathcal{F} \Rightarrow y \notin \mathcal{F}_{\mathcal{X}}^{Nu-cl} \cap \mathcal{A} \Rightarrow y \notin \mathcal{F}_{\mathcal{X}}^{Nu-cl}$$ as $y \in \mathcal{A}$. Now, by **proposition 2.5.1** (i) and (1) we have $\mathcal{F}_{\mathcal{X}}^{Nu-cl}$ to be N-C with respect to $\mathcal{T}_{\mathcal{X}}$ and we have a point $y \notin \mathcal{F}_{\mathcal{X}}^{Nu-cl}$ and so by the Nu-regularity of the space $(\mathcal{X}, \mathcal{T}_{\mathcal{X}})$, we have *N-OSs* \mathcal{G} and \mathcal{H} in $\mathcal{T}_{\mathcal{X}}$ so that $y \in \mathcal{G}$, $\mathcal{F}_{\mathcal{X}}^{Nu-cl} \subseteq \mathcal{H}$ and $\mathcal{G} \cap \mathcal{H} = \emptyset$. Now, $y \in \mathcal{A}$ with $y \in \mathcal{G} \Rightarrow y \in \mathcal{G} \cap \mathcal{A}$ and $\mathcal{F}_{\mathcal{X}}^{Nu-cl} \subseteq \mathcal{H} \Rightarrow \mathcal{F}_{\mathcal{X}}^{Nu-cl} \cap \mathcal{A} \subseteq \mathcal{H} \cap \mathcal{A} \Rightarrow \mathcal{F} \subseteq \mathcal{H} \cap \mathcal{A}$, from (1). Also, $(\mathcal{G} \cap \mathcal{A}) \cap (\mathcal{H} \cap \mathcal{A}) = (\mathcal{G} \cap \mathcal{H}) \cap \mathcal{A} = \emptyset \cap \mathcal{A} = \emptyset$. If we put $\mathcal{G} \cap \mathcal{A} = \mathcal{P}$ and $\mathcal{H} \cap \mathcal{A} = \mathcal{Q}$, then \mathcal{P} and \mathcal{Q} are $\mathcal{N}\text{-}OSs$ in $\mathcal{T}_{\mathcal{A}}$ since \mathcal{G} and \mathcal{H} are $\mathcal{N}\text{-}O$ in $\mathcal{T}_{\mathcal{X}}$. Thus, for arbitrary $\mathcal{N}\text{-}CS$ \mathcal{F} in \mathcal{A} and an arbitrary point $y \notin \mathcal{F}$, we have $y \in \mathcal{P}$, $\mathcal{F} \subseteq \mathcal{Q}$ and $\mathcal{P} \cap \mathcal{Q} = \emptyset$ thereby showing that $(\mathcal{A}, \mathcal{T}_{\mathcal{A}})$ is Nu-regular. # **Proposition 6.1.24** A sub-space $(\mathcal{Y}, \mathcal{T}_{v})$ of a \mathcal{T}_{3}^{N} space $(\mathcal{X}, \mathcal{T}_{x})$ is also \mathcal{T}_{3}^{N} . # **Proof:** A T_3^N space is a T_1^N space which is Nu-regular. By **proposition 6.1.7** a sub-space of a T_1^N is a T_1^N space and by **proposition 6.1.23** a sub-space of a Nu-regular space is Nu-regular. Thus, if $(\mathcal{X}, \mathcal{T}_{\mathcal{X}})$ is T_3^N then it is both T_1^N and Nu-regular, thus by the **propositions 6.1.7** and **6.1.23**, the sub-space $(\mathcal{Y}, \mathcal{T}_{\mathcal{Y}})$ of $(\mathcal{X}, \mathcal{T}_{\mathcal{X}})$ is also a T_3^N space. #### **Proposition 6.1.25** For every T_3 GTS (X, \mathcal{T}) , the N-TS $(X, \mathcal{T} \setminus \emptyset)$ is T_3^N . **Proof**: By *theorem 1.6.15*, if $(\mathcal{X}, \mathcal{T})$ is a *GTS* then $(\mathcal{X}, \mathcal{T} \setminus \emptyset)$ is a *N-TS*. # **Proposition 6.1.26** For every T_3 GTS (X,T), the N-TS $(X,T \setminus X)$ is T_3^N . **Proof**: By *theorem 1.6.16*, if (X, T) is a *GTS* then $(X, T \setminus X)$ is a *N-TS*. #### **Definition 6.1.5** A N-TS $(\mathcal{X}, \mathcal{T})$ will be termed a Nu-normal space if corresponding to a pair of disjoint N-CSs \mathcal{C} and \mathcal{D} , there exists $\mathcal{O}_{\mathcal{C}}$, $\mathcal{O}_{\mathcal{D}} \in \mathcal{T}$ so that: $\mathcal{C} \subseteq \mathcal{O}_{\mathcal{C}}$, $\mathcal{D} \in \mathcal{O}_{\mathcal{D}}$ and $\mathcal{O}_{\mathcal{C}} \cap \mathcal{O}_{\mathcal{D}} = \emptyset$. If the space $(\mathcal{X}, \mathcal{T})$ is also T_1^N then the space is called a Nu-T₄ space (T_4^N) in short). ## **Proposition 6.1.27** Let a N-TS (X, \mathcal{T}) be Nu-normal. Then for any N-CS \mathcal{F} and a N-OS \mathcal{G} which contain \mathcal{F} , there exists a N-OS \mathcal{V} so that $\mathcal{F} \subseteq \mathcal{V}$ and $\mathcal{V}^{Nu-cl} \subseteq \mathcal{G}$. # **Proof:** Let us first assume that the space $(\mathcal{X}, \mathcal{T})$ be Nu-normal and \mathcal{F} is some N-CS and \mathcal{G} is some N-OS in \mathcal{T} such that $\mathcal{F} \subset \mathcal{G}$. Then $c\mathcal{G}$ is N-C and $\mathcal{F} \cap c\mathcal{G} = \emptyset$. Thus, \mathcal{F} and $c\mathcal{G}$ are disjoint *N-CSs* and hence by the property of Nu-normality of the space there will be two *N-OSs* \mathcal{U} and \mathcal{V} that satisfy $c\mathcal{G} \subseteq \mathcal{U}$, $\mathcal{F} \subseteq \mathcal{V}$, and $\mathcal{U} \cap \mathcal{V} = \emptyset$. Now, $\mathcal{U} \cap \mathcal{V} = \emptyset \Rightarrow \mathcal{V} \subseteq c\mathcal{U}$, with $c\mathcal{U}$ being N-C. Also $\mathcal{V} \subseteq c\mathcal{U} \Rightarrow \mathcal{V}^{Nu-cl} \subseteq (c\mathcal{U})^{Nu-cl} = c\mathcal{U}$, $c\mathcal{U}$ being N-C. Also $cG \subseteq \mathcal{U} \Rightarrow c\mathcal{U} \subseteq G$ and hence $\mathcal{V}^{Nu-cl} \subseteq G$. Thus, we get $\mathcal{F} \subseteq \mathcal{V}$ and $\mathcal{V}^{Nu-cl} \subseteq \mathcal{G}$. # **Proposition 6.1.28** If $(\mathcal{Y}, \mathcal{T}_y)$ is Nu-homomorphic to a Nu-normal N-TS $(\mathcal{X}, \mathcal{T}_x)$, then $(\mathcal{Y}, \mathcal{T}_y)$ is also Nu-normal. #### **Proof:** We assume \mathcal{F} and \mathcal{G} to be two random disjoint *N-CSs* with respect to \mathcal{T}_{y} and let ψ be a Nu-homomorphism between $(\mathcal{X}, \mathcal{T}_{x})$ and $(\mathcal{Y}, \mathcal{T}_{y})$. Then ψ is a weakly Nu-continuous map and as such $\psi^{-1}(\mathcal{F})$ and $\psi^{-1}(\mathcal{G})$ are *N-C* with respect to \mathcal{T}_{x} , by **proposition 5.1.4**. Also, $\psi^{-1}(\mathcal{F}) \cap \psi^{-1}(\mathcal{G}) = \psi^{-1}(\mathcal{F} \cap \mathcal{G}) = \psi^{-1}(\emptyset) = \emptyset$, since ψ is one-one. Thus, $\psi^{-1}(\mathcal{F})$ and $\psi^{-1}(\mathcal{G})$ are disjoint *N-CSs* with respect to \mathcal{T}_x and since the space $(\mathcal{X}, \mathcal{T}_x)$ is Nu-normal, so there will be *N-OSs* \mathcal{P} and \mathcal{Q} in \mathcal{T}_x , so that $\psi^{-1}(\mathcal{F}) \subseteq \mathcal{P}$ and $\psi^{-1}(\mathcal{G}) \subseteq \mathcal{Q}$ and $\mathcal{P} \cap \mathcal{Q} = \emptyset$. Now, $\psi^{-1}(\mathcal{F}) \subseteq \mathcal{P} \Rightarrow \psi[\psi^{-1}(\mathcal{F})] \subseteq \psi(\mathcal{P}) \Rightarrow \mathcal{F} \subseteq \psi(\mathcal{P})$ and similarly $\mathcal{G} \subseteq \psi(\mathcal{Q})$. Also, ψ being N-O, by **proposition 5.1.17**, the sets $\psi(\mathcal{P})$ and $\psi(\mathcal{Q})$ are N-O in \mathcal{T}_y such that $\psi(\mathcal{P}) \cap \psi(\mathcal{Q}) = \psi(\mathcal{P} \cap \mathcal{Q}) = \emptyset$, since ψ is one-one. Thus, if we put $\psi(\mathcal{P}) = \mathcal{M}$ and $\psi(\mathcal{Q}) = \mathcal{N}$, then \mathcal{M} and \mathcal{N} are N-O in \mathcal{T}_y and $\mathcal{F} \subseteq \mathcal{M}$, $\mathcal{G} \subseteq \mathcal{N}$ and $\mathcal{M} \cap \mathcal{N} = \emptyset$. This leads to the conclusion that $(\mathcal{Y}, \mathcal{T}_y)$ is also Nu-normal. #### **Proposition 6.1.29** Every T_4^N space is also a T_3^N space. # **Proof:** If the N-TS $(\mathcal{X}, \mathcal{T})$ is T_4^N , then it is T_1^N and Nu-normal. Thus, it would be sufficient to show that $(\mathcal{X}, \mathcal{T})$ is Nu-regular. Now, since \mathcal{X} is Nu-normal, so for two arbitrary disjoint *N-CSs* \mathcal{F} and \mathcal{G} , there exist *N-OSs* \mathcal{P} and \mathcal{Q} satisfying $\mathcal{F} \subseteq \mathcal{P}$, $\mathcal{G} \subseteq \mathcal{Q}$ and $\mathcal{P} \cap \mathcal{Q} = \emptyset$. Now, if we assume the $N\text{-}CS \mathcal{F}$ in \mathcal{X} , which was chosen arbitrarily and a random point x in G so that $x \notin \mathcal{F}$ as $\mathcal{F} \cap G = \emptyset$ then the $N\text{-}OSs \mathcal{P}$ and Q that satisfy $x \in Q, \mathcal{F} \subseteq \mathcal{P}$ and $\mathcal{P} \cap Q = \emptyset$. Hence, $(\mathcal{X}, \mathcal{T})$ is also a T_3^N space. # 6.2 Separation Axioms in Anti-Topological Spaces # **Definition 6.2.1** An A-TS (X,T) will be an anti- T_0 space $(T_0^A \text{ in short})$ if for random elements $x \neq y$ there is a $Q \in T$ for which, whenever $x \in Q$, $y \notin Q$ or, whenever $y \in Q$, $x \notin Q$. In other words, for any set of two unequal points in the space there will be an anti-open set that enclose one of the points excluding the other. # **Proposition 6.2.1** Let an A-TS (X,T) be an T_0^A space then for arbitrary distinct points x,y in X, $[\{x\}]^{Anti-cl} \cap [\{y\}]^{Anti-cl} = \emptyset$. #### **Proof:** Assume \mathcal{X} to be T_0^A and $x \neq y$ be arbitrary elements in \mathcal{X} , then there will be $\mathcal{L} \in \mathcal{T}$ so that whenever $x \in \mathcal{L}$, $y \notin \mathcal{L}$ or, whenever $y \in \mathcal{L}$, $x \notin \mathcal{L}$. Now, whenever $x \in \mathcal{L}$, $\{x\} \subseteq \mathcal{L}$ and whenever $y \notin \mathcal{L}$, $\{y\} \not\subset \mathcal{L}$ Again, whenever $\{x\} \subseteq \mathcal{L}$, $[\{x\}]^{Anti-cl} \subseteq \mathcal{L}^{Anti-cl}$ by **proposition 4.3.3** (iii) Also, $\{y\} \not\subset \mathcal{L} \Rightarrow [\{y\}]^{Anti-cl} \not\subset \mathcal{L}^{Anti-cl}$. Thus, $[\{x\}]^{Anti-cl} \cap [\{y\}]^{Anti-cl} = \emptyset$. # Corollary 6.2.1 Let an A-TS $(\mathcal{X}, \mathcal{T})$ be an T_0^A space. Then for arbitrary distinct points p, q in $\mathcal{X}, p \notin [\{q\}]^{Anti-cl}$ and $q \notin [\{p\}]^{Anti-cl}$. # **Proposition 6.2.2** For every T_0^A A-TS $(\mathfrak{X}, \mathcal{T})$, the N-TS $(\mathfrak{X}, \mathcal{T} \cup \emptyset)$ is T_0^N . **Proof**: By *theorem 1.6.18*, if $(\mathcal{X}, \mathcal{T})$ is an A-TS, then $(\mathcal{X}, \mathcal{T} \cup \emptyset)$ is a N-TS. # **Proposition 6.2.3** For every T_0^A A-TS $(\mathfrak{X}, \mathcal{T})$, the N-TS $(\mathfrak{X}, \mathcal{T} \cup \mathfrak{X})$ is T_0^N . **Proof**: By *theorem 1.6.19*, if $(\mathcal{X}, \mathcal{T})$ is an *A-TS*, then $(\mathcal{X}, \mathcal{T} \cup \mathcal{X})$ is a *N-TS* # **Remark 6.2.1** **Propositions 6.2.2** and **6.2.3** shows that a T_0^N space can be obtained from every T_0^A space. And this follows from **remark 1.6.11** of **chapter 1**. # **Proposition 6.2.4** If a one-one, onto, and A-O mapping f exists between two A-TSs (X, T_x) and (Y, T_y) and if (X, T_x) is T_0^A then the space (Y, T_y) is also T_0^A . #### **Proof:** When $(\mathcal{X}, \mathcal{T}_x)$ is T_0^A and f is a one-one A-O mapping, let us assume two distinct points $y_1 \neq y_2 \in \mathcal{Y}$. Now, since f is onto, there will be elements $x_1 \neq x_2 \in \mathcal{X}$ so that $f(x_1) = y_1$ and $f(x_2) = y_2$. Again, since $(\mathcal{X}, \mathcal{T}_x)$ is an T_0^A space, there is a $\mathcal{R} \in \mathcal{T}_x$ which contains one of x_1 or x_2 only and not the other. If $x_1 \in \mathcal{R}$ then $f(x_1) \in f(\mathcal{P}) \in \mathcal{T}_y$ since f is A-O. Thus, $y_1 \in f(\mathcal{R}) \in \mathcal{T}_y$ thereby meaning that $f(\mathcal{R}) \in \mathcal{T}_y$ contains y_1 but not y_2 and hence the space $(\mathcal{Y}, \mathcal{T}_y)$ is also T_0^A since the points y_1 and y_2 are arbitrary. ## **Definition 6.2.2** An A-TS (X, \mathcal{T}) will be termed as anti- T_1 $(T_1^A \text{ in short})$ if for each arbitrary pair of points $p \neq q$ in X there exist $\mathcal{K}, \mathcal{L} \in \mathcal{T}$ satisfying $p \in \mathcal{K} \setminus \mathcal{L}$ and, $q \in \mathcal{L} \setminus \mathcal{K}$. # **Proposition 6.2.5** If the singleton subsets of an A-TS (X,T) are A-C then the A-TS will be a T_1^A space. #### **Proof:** For two random points: p, q in \mathcal{X} , if we first assume the singleton $\{p\} = \mathcal{P} \subseteq \mathcal{X}$ is A-C, then $c\mathcal{P} \in \mathcal{T}$ with $p \notin c\mathcal{P}$ but $q \in c\mathcal{P}$. Analogously, $c(\{q\} = \mathcal{Q}) \in \mathcal{T}$ with $q \notin c\mathcal{Q}$ but $p \in c\mathcal{Q}$. Hence, if we assume: $\mathcal{M} = c\mathcal{Q}$ and $\mathcal{N} = c\mathcal{P}$, then the space $(\mathcal{X}, \mathcal{T})$ will satisfy the condition for being a T_1^A space if the singleton subsets are A-C. # **Remark 6.2.2** The converse of *proposition 6.2.5* is however not true and can be observed from the following example: Let us assume $\mathcal{X} = \{1,2,3,4,5\}$, and the A- $T = \{\emptyset, \{1,2,3\}, \{1,2,4\}, \{1,2,5\}, \{1,3,4\}, \{1,3,5\}, \{2,3,4\}, \{2,3,5\}, \{3,4,5\},$ then $(\mathcal{X}, \mathcal{T})$ is an A-TS. For any pair of distinct points, the condition for T_1^A is satisfied but none of the singleton subsets of \mathcal{X} are A-C. However, as seen in the **proposition 6.2.5**, when the singletons are closed then the space is T_1^A . # **Proposition 6.2.6** If a one-one, onto, and A-O mapping f exists between two A-TSs (X, T_x) and (Y, T_y) and if (X, T_x) is T_1^A then (Y, T_y) is also T_1^A . # **Proof:** Let $(\mathcal{X}, \mathcal{T}_{\mathcal{X}})$ be T_1^A and f be a one-one, onto and A-O mapping. Let us assume two distinct points $q_1, q_2 \in \mathcal{Y}$. Now, since f is onto, there will be elements $p_1 \neq p_2 \in \mathcal{X}$ satisfying $f(p_1) = q_1$ and $f(p_2) = q_2$. Again, $(\mathcal{X}, \mathcal{T}_{\mathcal{X}})$ being a T_1^A space, there exist $\mathcal{P}, \mathcal{Q} \in \mathcal{T}_{\mathcal{X}}$ satisfying $p \in \mathcal{P} \setminus \mathcal{Q}$ and, $q \in \mathcal{Q} \setminus \mathcal{P}$ with arbitrary points p, q in \mathcal{X} . Further, f being A-O $f(\mathcal{Q}), f(\mathcal{Q}) \in \mathcal{T}_{\mathcal{Y}}$ and as such, we have $q_1 = f(p_1) \in f(\mathcal{P}) \setminus f(\mathcal{Q})$ and $q_2 = f(p_2) \in f(\mathcal{Q}) \setminus f(\mathcal{P})$ thereby showing that $(\mathcal{Y}, \mathcal{T}_{\mathcal{Y}})$ is also a T_1^A space, the points q_1 and q_2 being distinct and arbitrary. # **Proposition 6.2.7** Every sub-space of an T_1^A space is an T_1^A space. #### **Proof:** Let us assume that the A-TS $(\mathcal{X}, \mathcal{T}_{\mathcal{X}})$ be T_1^A and let $(\mathcal{A}, \mathcal{T}_{\mathcal{A}})$ be a sub-space of the space $(\mathcal{X}, \mathcal{T}_{\mathcal{X}})$. Let $y_1 \neq y_2$ are two arbitrary points in \mathcal{A} . Since \mathcal{A} is a sub-space of \mathcal{X} , so y_1, y_2 will be arbitrary points in \mathcal{X} and by virtue of being a T_1^A space there will be two A-OSs Q_{y_1}, Q_{y_2} in $\mathcal{T}_{\mathcal{X}}$ so that so that $y_1 \in Q_{y_1} \setminus Q_{y_2}$ and $y_2 \in Q_{y_2} \setminus Q_{y_1}$. Now, in the sub-space \mathcal{A} we will have A-OSs $Q_1 = Q_{y_1} \cap \mathcal{A}$ and $Q_2 = Q_{y_2} \cap \mathcal{A}$ so that $y_1 \in Q_1 \setminus Q_2$ and $y_2 \in Q_2 \setminus Q_1$ and as such the sub-space $(\mathcal{A}, \mathcal{T}_{\mathcal{A}})$ becomes a T_1^A space. # **Proposition 6.2.8** Every T_1^A space is also an T_0^A space. # **Proof:** When $(\mathcal{X}, \mathcal{T})$ is T_1^A , then for arbitrary set of unequal points p, q there exist $\mathcal{K}, \mathcal{L} \in \mathcal{T}$ that satisfy $p \in \mathcal{K} \cap c\mathcal{L}$ and, $q \in \mathcal{L} \cap c\mathcal{K}$ which means that whenever $p \in \mathcal{K}, q \notin \mathcal{K}$ and whenever $q \in \mathcal{L}, p \notin \mathcal{L}$. Hence $(\mathcal{X}, \mathcal{T})$ is T_0^A . # **Proposition 6.2.9** For every T_1^A A-TS (X, T), the N-TS $(X, T \cup \emptyset)$ is T_1^N . **Proof**: By *theorem 1.6.18*, if $(\mathcal{X}, \mathcal{T})$ is an A-TS then $(\mathcal{X}, \mathcal{T} \cup \emptyset)$ is a N-TS. # **Proposition 6.2.10** For every T_1^A A-TS (X, T), the N-TS $(X, T \cup X)$ is T_1^N . **Proof**: By *theorem 1.6.19*, if $(\mathcal{X}, \mathcal{T})$ is an A-TS then $(\mathcal{X}, \mathcal{T} \cup \mathcal{X})$ is a N-TS. ## **Definition 6.2.3** An A-TS (X,T) will be called an anti- T_2 space $(T_2^A \text{ in short})$ whenever for arbitrary pair of unequal points p and q in X there exist $\mathcal{K}, \mathcal{L} \in \mathcal{T}$ such that $p \in \mathcal{K}, q \in \mathcal{L}$ and $\mathcal{K} \cap \mathcal{L} = \emptyset$. # **Proposition 6.2.11** For every T_2^A A-TS $(\mathfrak{X}, \mathcal{T})$, the N-TS $(\mathfrak{X}, \mathcal{T} \cup \emptyset)$ is T_2^N . **Proof**: By *theorem 1.6.18*. # **Proposition 6.2.12** For every T_2^A ATS $(\mathcal{X}, \mathcal{T})$, the N-TS $(\mathcal{X}, \mathcal{T} \cup \mathcal{X})$ is T_2^N . Proof: By theorem 1.6.19. # **Proposition 6.2.13** Every sub-space of an T_2^A space is an T_2^A space. # **Proof:** Let us assume that the A-TS $(\mathcal{X}, \mathcal{T}_{\mathcal{X}})$ is T_2^A and let $(\mathcal{A}, \mathcal{T}_{\mathcal{A}})$ is a sub-space of the space $(\mathcal{X}, \mathcal{T}_{\mathcal{X}})$. Let $y_1 \neq y_2$ are two arbitrary points in \mathcal{A} . Then \mathcal{A} being a subspace of \mathcal{X} , so y_1, y_2 will be arbitrary points in \mathcal{X} also and by virtue of being a T_2^A space there will be two A-OSs $\mathcal{P}_{y_1}, \mathcal{P}_{y_2}$ in $\mathcal{T}_{\mathcal{X}}$ so that $y_1 \in \mathcal{P}_{y_1}, y_2 \in \mathcal{P}_{y_2}$ with $\mathcal{P}_{y_1} \cap \mathcal{P}_{y_2} = \emptyset$. Now, in the sub-space \mathcal{A} we will have A-OSs $\mathcal{P}_1 = \mathcal{P}_{y_1} \cap \mathcal{A}$ and $\mathcal{P}_2 = \mathcal{P}_{y_2} \cap \mathcal{A}$ so that $y_1 \in \mathcal{P}_1$ and $y_2 \in \mathcal{P}_2$ and $\mathcal{P}_1 \cap \mathcal{P}_2 = \emptyset$. Thus, the sub-space $(\mathcal{A}, \mathcal{T}_{\mathcal{A}})$ is an T_2^A space. # **Proposition 6.2.14** Every T_2^A space is an T_1^A space. #### **Proof:** Let the A- $TS(\mathcal{X}, \mathcal{T})$ be T_2^A , then if $p \neq q \in \mathcal{X}$ there exist $\mathcal{Q}, \mathcal{R} \in \mathcal{T}$ so that $p \in \mathcal{Q}, q \in \mathcal{R}$ and $\mathcal{Q} \cap \mathcal{R} = \emptyset$. The conditions $\mathcal{Q} \cap \mathcal{R} = \emptyset$ and $p \in \mathcal{Q}$ results in $q \notin \mathcal{Q}$ and further $q \in \mathcal{R}$ with $\mathcal{Q} \cap \mathcal{R} = \emptyset$ results in $p \notin \mathcal{R}$ and hence the space $(\mathcal{X}, \mathcal{T})$ is also a T_1^A space. # **Proposition 6.2.15** If a one-one, onto, A-O and anti-continuous mapping f exists between two A-TSs (X, T_x) and (Y, T_y) and if (X, T_x) is T_2^A then the space (Y, T_y) is also T_2^A . #### **Proof:** Let $(\mathcal{X}, \mathcal{T}_x)$ be T_2^A and f be a one-one and A-O mapping of $(\mathcal{X}, \mathcal{T}_x)$ onto $(\mathcal{Y}, \mathcal{T}_y)$. Let us assume two distinct points $y_1, y_2 \in \mathcal{Y}$. Now, since f is onto, there will exist elements $x_1 \neq x_2 \in \mathcal{X}$ so that $f(x_1) = y_1$ and $f(x_2) = y_2$. Again, since $(\mathcal{X}, \mathcal{T}_x)$ is a T_2^A space, there exist $\mathcal{O}_x, \mathcal{O}_y \in \mathcal{T}_x$ so that $x \in \mathcal{O}_x$ and, $y \in \mathcal{O}_y$ and $\mathcal{O}_x \cap \mathcal{O}_y = \emptyset$. Further, f being A-O $f(\mathcal{O}_x), f(\mathcal{O}_y) \in \mathcal{T}_y$ and as such, we have $y_1 = f(x_1) \in f(\mathcal{O}_x)$ and $y_2 = f(x_2) \in f(\mathcal{O}_y)$ and $f(\mathcal{O}_x) \cap f(\mathcal{O}_y) = f(\mathcal{O}_x \cap \mathcal{O}_y) = f(\emptyset) = \emptyset$, since f is one-one and onto. Hence the space $(\mathcal{Y}, \mathcal{T}_y)$ is T_2^A . # **Proposition 6.2.16** If a one-one, onto, and anti-continuous mapping f exists between two A-TSs (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) and if (Y, \mathcal{T}_Y) is T_2^A then the space (X, \mathcal{T}_X) is also T_2^A . #### **Proof:** Assume $x_1 \neq x_2 \in \mathcal{X}$ and since f is one-one, so $x_1 \neq x_2$ means $f(x_1) \neq f(x_2)$. Suppose that $f(x_1) = y_1$ and $f(x_2) = y_2$ or, $x_1 = f^{-1}(y_1)$ and $x_2 = f^{-1}(y_2)$. Then $y_1 \neq y_2 \in \mathcal{Y}$ and now since $(\mathcal{Y}, \mathcal{T}_y)$ is a \mathcal{T}_2^A space, we have $Q_1, Q_2 \in \mathcal{T}_y$ so that $y_1 \in Q_1$ and $y_2 \in Q_2$ and $Q_1 \cap Q_2 = \emptyset$. Again, since f is anti-continuous $f^{-1}(Q_1)$, $f^{-1}(Q_1) \in \mathcal{T}_x$ so that: $$y_1 \in Q_1 \Rightarrow f^{-1}(y_1) \in f^{-1}(Q_1) \Rightarrow x_1 \in f^{-1}(Q_1).$$ Similarly, we have: $y_2 \in Q_2 \Rightarrow f^{-1}(y_2) \in f^{-1}(Q_2) \Rightarrow x_2 \in f^{-1}(Q_2)$ and moreover, we have: $f^{-1}(Q_1) \cap f^{-1}(Q_2) = f^{-1}(Q_1 \cap Q_2) = f^{-1}(\emptyset) = \emptyset$. Thus, for two arbitrary points $x_1 \neq x_2 \in \mathcal{X}$, we have $f^{-1}(Q_1), f^{-1}(Q_1) \in \mathcal{T}_x$ so that $x_1 \in f^{-1}(Q_1)$ and $x_2 \in f^{-1}(Q_2)$ and $f^{-1}(Q_1) \cap f^{-1}(Q_2) = \emptyset$. Hence the space $(\mathcal{X}, \mathcal{T}_x)$ is also \mathcal{T}_2^A . # **Definition 6.2.4** An A-TS $(\mathcal{X}, \mathcal{T})$ will be called an anti-regular space if corresponding to all A-CS \mathcal{C} and $x \notin \mathcal{C}$ there exist $\mathcal{O}_c, \mathcal{O}_x \in \mathcal{T}$ so that: $\mathcal{C} \subseteq \mathcal{O}_c, x \in \mathcal{O}_x$ and $\mathcal{O}_c \cap \mathcal{O}_x = \emptyset$. If the A-TS $(\mathcal{X}, \mathcal{T})$ is also T_1^A then the A-TS is called an anti- T_3 space $(T_3^A$ in short). # **Proposition 6.2.17** For every anti-regular A-TS (X,T), the N-TS $(X,T \cup \emptyset)$ is Nu-regular. **Proof**: By theorem 1.6.18. # **Proposition 6.2.18** For every anti-regular A-TS (X,T), the N-TS $(X,T \cup X)$ is Nu-regular. Proof: By theorem 1.6.19. # **Proposition 6.2.19** Every sub-space of an anti-regular space is anti-regular. #### **Proof:** Assume $(\mathcal{A}, \mathcal{T}_{\mathcal{A}})$ to be a sub-space of an anti-regular A-TS $(\mathcal{X}, \mathcal{T})$ and let \mathcal{P} be a random $\mathcal{T}_{\mathcal{A}}$ -A-CS and y be an arbitrary point in \mathcal{A} so that $y \notin \mathcal{P}$. Now, by **proposition** 4.5.1 (ii) we have $\mathcal{P}_{\mathcal{Y}}^{Anti-cl} = \mathcal{P}_{\mathcal{X}}^{Anti-cl} \cap \mathcal{A}$ where $\mathcal{P}_{\mathcal{X}}^{Anti-cl}$ is the anti-closure of \mathcal{P} in the space $(\mathcal{X}, \mathcal{T}_{\mathcal{X}})$. Also \mathcal{P} being A-C in $\mathcal{T}_{\mathcal{A}}$, $\mathcal{P}_{\mathcal{A}}^{Anti-cl} = \mathcal{P}$ and so we have: $\mathcal{P} = \mathcal{P}_{\mathcal{X}}^{Anti-cl} \cap \mathcal{A}$(1) Now, $y \notin \mathcal{P} \Rightarrow y \notin \mathcal{P}_{\mathcal{X}}^{Anti-cl} \cap \mathcal{A} \Rightarrow y \notin \mathcal{P}_{\mathcal{X}}^{Anti-cl}$ as $y \in \mathcal{A}$. Now, by *proposition 4.5.1* (i) and (1) we have $\mathcal{P}_{\mathcal{X}}^{Anti-cl}$ to be A-C with respect to $\mathcal{T}_{\mathcal{X}}$ and we have a point $y \notin \mathcal{P}_{\mathcal{X}}^{Anti-cl}$ and so by the anti-regularity of the space $(\mathcal{X}, \mathcal{T}_{\mathcal{X}})$, we have A- $OSs \ \mathcal{Q}$ and \mathcal{R} in $\mathcal{T}_{\mathcal{X}}$ so that $y \in \mathcal{Q}, \mathcal{P}_{\mathcal{X}}^{Anti-cl} \subseteq \mathcal{R}$ and $\mathcal{Q} \cap \mathcal{R} = \emptyset$. Now, $y \in \mathcal{A}$ with $y \in \mathcal{Q} \Rightarrow y \in \mathcal{Q} \cap \mathcal{A}$ and $\mathcal{P}_{\mathcal{X}}^{Anti-cl} \subseteq \mathcal{R} \Rightarrow \mathcal{P}_{\mathcal{X}}^{Anti-cl} \cap \mathcal{A} \subseteq \mathcal{R} \cap \mathcal{A} \Rightarrow \mathcal{P} \subseteq \mathcal{R} \cap \mathcal{A}$, from (1). Also, $(\mathcal{Q} \cap \mathcal{A}) \cap (\mathcal{R} \cap \mathcal{A}) = (\mathcal{Q} \cap \mathcal{R}) \cap \mathcal{A} = \emptyset \cap \mathcal{A} = \emptyset$. If we assign $Q \cap \mathcal{A} = \mathcal{M}$ and $\mathcal{R} \cap \mathcal{A} = \mathcal{N}$, then \mathcal{M} and \mathcal{N} are A-OSs in $\mathcal{T}_{\mathcal{A}}$ since Q and \mathcal{H} are AO in \mathcal{T}_x . Thus, for random A-CS \mathcal{P} in \mathcal{A} and random pointy $\notin \mathcal{P}$, satisfying $y \in \mathcal{M}$, $\mathcal{P} \subseteq \mathcal{N}$ and $\mathcal{M} \cap \mathcal{N} = \emptyset$ thereby showing that $(\mathcal{A}, \mathcal{T}_{\mathcal{A}})$ is anti-regular. # **Proposition 6.2.20** A sub-space $(\mathcal{Y}, \mathcal{T}_{\mathcal{Y}})$ of a T_3^A space $(\mathcal{X}, \mathcal{T}_{\mathcal{X}})$ is also T_3^A . **Proof:** An T_3^A space is an T_1^A space and is also anti-regular. By **proposition 6.2.7** a sub-space of an T_1^A is an T_1^A space and by **proposition 6.2.19** a sub-space of an anti-regular space is anti-regular. Thus, if $(\mathcal{X}, \mathcal{T}_x)$ is \mathcal{T}_3^A then it is both \mathcal{T}_1^A and anti-regular, so by **propositions 6.2.7** and **6.2.19**, the sub-space $(\mathcal{Y}, \mathcal{T}_{\mathcal{V}})$ of $(\mathcal{X}, \mathcal{T}_{\mathcal{X}})$ is also an \mathcal{T}_3^A space. **Proposition 6.2.21** Every T_3^A space is also an T_2^A space. **Proof:** If the A-TS $(\mathcal{X}, \mathcal{T})$ is T_3^A , then it is T_1^A and anti-regular. For $x_1 \neq x_2 \in \mathcal{X}$ we have by virtue of T_1^A space there exist A-OSs O_1 and O_2 so that $x_1 \in O_1 \setminus O_2$ and $x_2 \in O_2 \setminus O_1$. Now, $x_1 \in \mathcal{O}_1$ means $x_1 \notin c(\mathcal{O}_1)$ and $c(\mathcal{O}_1)$ is a A-CS and hence by virtue of anti- regularity there exist A-OSs \mathcal{P} and \mathcal{Q} so that $x_1 \in \mathcal{P}$, $c(\mathcal{O}_1) \subseteq \mathcal{Q}$ and $\mathcal{P} \cap \mathcal{Q} = \emptyset$. Now, $x_2 \in \mathcal{O}_2 \setminus \mathcal{O}_1 \Rightarrow x_2 \notin \mathcal{O}_1 \Rightarrow x_2 \in c(\mathcal{O}_1) \subseteq \mathcal{Q} \Rightarrow x_2 \in \mathcal{Q}$. Thus, for arbitrary $x_1 \neq x_2 \in \mathcal{X}$, we have A-OSs \mathcal{P} and \mathcal{Q} satisfying $x_1 \in \mathcal{P}$, $x_2 \in \mathcal{Q}$ and $\mathcal{P} \cap Q = \emptyset$ which shows that the space $(\mathcal{X}, \mathcal{T})$ is also T_2^A . **Proposition 6.2.22** For every T_3^A A-TS $(\mathcal{X}, \mathcal{T})$, the N-TS $(\mathcal{X}, \mathcal{T} \cup \emptyset)$ is T_3^N . Proof: By theorem 1.6.18. **Proposition 6.2.23** For every T_3^A A-TS (X, T), the N-TS $(X, T \cup X)$ is T_3^N . Proof: By theorem 1.6.19. **Definition 6.2.5** An A-TS (X,T) will be called an anti-normal space if corresponding to a pair of disjoint A-CSs \mathcal{C} and \mathcal{D} , there exist $\mathcal{O}_{\mathcal{C}}$, $\mathcal{O}_{\mathcal{D}} \in \mathcal{T}$ so that: $\mathcal{C} \subseteq \mathcal{O}_{\mathcal{C}}$, $\mathcal{D} \in \mathcal{O}_{\mathcal{D}}$ and $\mathcal{O}_{\mathcal{C}} \cap$ $\mathcal{O}_D = \emptyset$. If the A-TS is also T_1^A then it is called an anti- T_4 space (T_4^A in short). **Proposition 6.2.24** For every anti-normal A-TS (X,T), the N-TS $(X,T \cup \emptyset)$ is Nu-normal. **Proof**: By *theorem 1.6.18*. 17 # **Proposition 6.2.25** For every anti-normal ATS (X,T), the N-TS $(X,T \cup X)$ is Nu-normal. **Proof**: By *theorem 1.6.19*. ### **Proposition 6.2.26** If an A-TS (X,T) is anti-normal then for arbitrary A-CS \mathcal{F} and an A-OS \mathcal{G} which contain \mathcal{F} , there exists an A-OS \mathcal{V} so that $\mathcal{F} \subseteq \mathcal{V}$ and $\mathcal{V}^{Anti-cl} \subseteq \mathcal{G}$. #### **Proof:** Let us first assume that the space $(\mathcal{X}, \mathcal{T})$ is anti-normal with \mathcal{F} as some A-CS and \mathcal{G} as some A-CS in \mathcal{T} so that $\mathcal{F} \subset \mathcal{G}$. Then $c\mathcal{G}$ is A-CS and $\mathcal{F} \cap c\mathcal{G} = \emptyset$. Thus, \mathcal{F} and $c\mathcal{G}$ are disjoint A-CSs and hence by the property of anti-normality of the space there will be two A-CSs \mathcal{K} and \mathcal{L} satisfying $c\mathcal{G} \subseteq \mathcal{K}$, $\mathcal{F} \subseteq \mathcal{L}$ and $\mathcal{K} \cap \mathcal{L} = \emptyset$. Now, $\mathcal{K} \cap \mathcal{L} = \emptyset \Rightarrow \mathcal{L} \subseteq c\mathcal{K}$, with $c\mathcal{K}$ being A-CS. Also, $\mathcal{L} \subseteq c\mathcal{K} \Rightarrow \mathcal{L}^{Anti-cl} \subseteq (c\mathcal{K})^{Anti-cl} = c\mathcal{K}$, $c\mathcal{K}$ being A-CS, proposition 4.3.2. Also, $c\mathcal{G} \subseteq \mathcal{K} \Rightarrow c\mathcal{K} \subseteq \mathcal{G}$ and hence $\mathcal{L}^{Anti-cl} \subseteq \mathcal{G}$. Thus, we get $\mathcal{F} \subseteq \mathcal{L}$ and $\mathcal{L}^{Anti-cl} \subseteq \mathcal{G}$. # **Proposition 6.2.27** Every T_4^A space is necessarily a T_3^A space. #### **Proof:** Let the A-TS $(\mathcal{X}, \mathcal{T})$ be T_4^A , then it is T_1^A and anti-normal. Thus, it would be sufficient to show that $(\mathcal{X}, \mathcal{T})$ is anti-regular. Now, since \mathcal{X} is anti-normal, so for two random disjoint A-CSs \mathcal{F} and \mathcal{G} , we have A-OSs \mathcal{K} , \mathcal{L} satisfying $\mathcal{F} \subseteq \mathcal{K}$, $\mathcal{G} \subseteq \mathcal{L}$ and $\mathcal{K} \cap \mathcal{L} = \emptyset$. Now, if we can assume the same A-CS \mathcal{F} in \mathcal{X} , which was also arbitrarily chosen and a random point x in \mathcal{G} so that $x \notin \mathcal{F}$ as $\mathcal{F} \cap \mathcal{G} = \emptyset$ then we have the A-OSs \mathcal{K} and \mathcal{L} that satisfy $x \in \mathcal{L}$ and $\mathcal{F} \subseteq \mathcal{K}$ and $\mathcal{K} \cap \mathcal{L} = \emptyset$ thereby showing that $(\mathcal{X}, \mathcal{T})$ is also T_3^A . # **Proposition 6.2.28** For every T_4^A ATS (X, \mathcal{T}) , the N-TS $(X, \mathcal{T} \cup \emptyset)$ is T_4^N . **Proof**: By *theorem 1.6.18*. # **Proposition 6.2.29** For every T_4^A ATS $(\mathcal{X}, \mathcal{T})$, the N-TS $(\mathcal{X}, \mathcal{T} \cup \mathcal{X})$ is T_4^N . **Proof**: By theorem 1.6.19.