CHAPTER 1

Introduction, Literature Review, and Basic Concepts

This chapter deals with the evolution of topological spaces from the initial
categorization and foundation of set-theoretic topology till the present day where
various spaces are defined and studied on the basis of the new types of sets that have
been defined over the period and also deals with the related aspects that will be

undertaken in the research work.
1.1 Introduction

Point set topology, alsoreferred to as general topology, can be called the study of set
theoretic ideas and how to manipulate or construct them for application in topology or
the study of different set structures.A framework for examining and comprehending the
characteristics of spaces that are independent of particular geometric features like
distance and angles is provided by general topology. One type of instrument or tool
employed in the study and analysis of metric spaces, which can possibly be considered
as the forerunner to the study of topological spaces, is distance. According to common
understanding, topology is the area of mathematics that studies the characteristics of a
geometric object that hold true while being repeatedly stretched, twisted, crumpled and
bent without snapping, breaking or creating holes in it. Because the structures or objects
under study in topology can be stretched, compressed, and deformed like rubber but
cannot be torn apart or pierced to create holes in them, the subject is sometimes referred
to as rubber-sheet geometry. When objects are distorted from one form to another
through allowable manipulations, homeomorphism between the objects is considered to
be the usual method for preserving their topological attributes or properties.
Homeomorphism, coming from Greek, which means having identical form or shape,
also known as structural isomorphism, is characterized by continuous function between
spaces that also has continuous inverse function. With a long history, the field of
general topology has been substantially evolved over the years. Even though there
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serves as the basis for majority of them, including differential topology, geometric
topology, and algebraic topology. Many fields of research have given rise to general
topology; the majority of them are related to the in-depth examination of the subsets of
the real line and their characteristics. The evolution can also be attributed to the study of
metric spaces and normed linear spaces, as well as the advent of the idea of manifolds.
Although the origins of the study of topology cannot be directly attributed to any one
person, Leonhard Euler and his Seven Bridges of Konigsberg problem are frequently
cited as the starting point. Euler introduced the concept of the Euler characteristic for
polyhedral in the 18" century, which paved the way for the development of
combinatorial topology, which was centered on using combinatorial methods to
understand the properties of geometric objects. Combinatorial topology is basically the
topological study of geometric figures or objects by considering them as elementary
geometric figures such as straight lines or individual points. The formula for a
polyhedron and Euler’s Kanigsberg seven bridges problem are acknowledged to be the
earliest results in the area of topology. From the formula of a polyhedral, the results
were later applied to other objects with holes in them to obtain distinct and unique
formulae for objects that were comparable. The concept of connectedness of points took
the center of study rather than the distance between the points in the analysis of the
problem. Henri Poincare, who developed the concepts of homology and homotopy,
which are essential tools in the discipline of topology, made substantial contributions to
the field in the late 1800’s and early 1900’s by adding algebraic invariants to the study
of topological spaces. A fundamental feature of algebraic topology is homology, which
allows one to differentiate between a surface’s inner and outer sides even when both
surfaces may share come features but still have other unique qualities. In algebraic
topology, homotopy is commonly defined as the situation when two curves with
common end points are drawn on an object’s surface and one of the curves can
continuously be deformed into the other, leaving the endpoints. The formalization of the
idea of topological spaces in the 20" century gave rise to point-set topology, which is
specialized in the study of open sets, closed sets, and continuous functions. This
framework allowed for a more comprehensive approach studying the conceptions of
continuity, convergence, and compactness in topology. Geometric topology and
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The latter is concerned with the study of geometric structures on topological spaces,
while the former works with smooth manifolds and differential mappings. These
branches of topology have stronglinks to differential geometry and have led to many
important results, one of which is the Poincare conjecture which is considered to be the
first of its kind in the field and could be solved about a hundred years later in 2003 from
the year 1904 when it was conjectured. The study of topological data analysis, which
uses topological techniques to analyze large, complicated data sets, has grown in
popularity in recent years. The multidisciplinary discipline has applications in material
science, machine learning, and neuroscience, among other fields. All things considered,
the growth of topology has been characterized by the creation of fresh ideas, methods,
and applications that have improved our comprehension of a space’s structure and given
researchers access to effective resources for handling issues in mathematics and other
academic disciplines. The study of topology started with the study of dimensions. The
dimensions related to a point, a line and a cuboid which were accepted to be the study in
one dimension, two dimension and three dimensions respectively. Attempts were also
made to establish studies in higher dimensions beyond three, which contributed to the
origin of manifolds in topology. The Cantorian theory of sets added wings to the study
of topology leading to the evolution of the set-theoretic topology or the general
topology of the present day. The axiomatic definition of set-theoretic topology which is
based on open sets was initiated by a class of French mathematicians, known as Nicolas
Bourbaki collectively or pseudonym as the Bourbaki Group. The definition was
formulated during the years 1935 to 1938 by the Bourbaki Group, by amalgamatingand
deeply analyzing the studies made by the mathematicians Giuseppe Peano (1858-1932),
Felix Hausdorff (1868-1942), Hermann Weyl (1885-1955), Frigyes Riesz (1880-1956),
René Maurice Fréchet (1878-1973), and Pavel Sergeyevich Aleksandrov (1896-1982).
The openness of the random union and limited intersection of subsets served as the
foundation for the original notion of a topology. Open sets are basically subsets of a set
under study. However, later the openness of the void set and the set itself, were added to
the axioms in 1939 by the Bourbaki and hence we have the present-day definition of
topology or a topological space. General topology or topology has been defined on a set
to be a group of the subsets of the collection of all possible subsets, or the group of all
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collection, arbitrary unions of the subsets belong to the collection and finite
intersections of the subsets belong to the collection. The set that is considered in the
definition of general topological space (GTS) is the classical set, where all the members
of the set are well defined. However, over the years, it has been found that the classical
set is not enough to define the notion of many a collection of objects. At times, the very
concept of a collection of objects failed to cover all the objects that deemed to be a
member of the named collection. Numerous such collections of objects, items, people
etc. defy the notion of the classical set and as such defining a topological space over
such vague collection of objects made the notion devoid of the actual concept. The
classical set fails to cover aspects that are not properly defined. But, in many situations,
unclear collections occur in real-life situations, without clear boundaries or limits or
even vivid starting points. As such, many scholars and philosophers contemplated on
refining the very idea of a set, which would possibly encompass all the possible
members of all envisaged collection of objects, items, people and so on. Such searches
for newer ideas brought about the concepts of a fuzzy set, which helped in taking care
of ill-defined sets, the intuitionistic fuzzy set, by which the scope of the fuzzy set was
improved, the neutrosophic set, which further generalized the intuitionistic fuzzy set,
and many other refinements of the sets have been developed over time to meet the
conditions of the collection of objects failed by the classical set. The Cantorian set is the
basis to the study of point set or general topology or topology, and as such
corresponding to the definition of the new types of sets, new definitions of topological
spaces specific to the new sets evolved. An element in the classical set is classified
according to whether it belongs to the set or not. Put otherwise, an element’s
membership in the classical set can be either 1 or 0, based on whether it is inside the set
or outside the set. However, elements of a fuzzy set have assorted membership grades,
ranging from 0 to 1, inclusive of all points in the range. Fuzzy topological space was
defined in accordance with the fuzzy set, and researchers and scholars in the field have
conducted several studies in the area. The basis of the fuzzy set is a membership of
some degree which automatically suggests non-membership for all members having
degree of membership less than 1 or perfect membership. However, the non-
membership grade was missing in the early definition of a fuzzy set and was later added
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its topology and space was defined. After the advent of fuzzy set, and subsequent
development and integration of intuitionistic fuzzy set, besides their corresponding
topological spaces, came the neutrosophic set, where the set was partitioned into three
distinct components: the truth, the indeterminate and the falsity. Definition of the
neutrosophic fuzzy set induced the definition of neutrosophic topology and its space. As
a consequence of the neutrosophic set new structures called neutro-structures and anti-
structures have been defined and studied. The studies made on the neutro and anti-
structures brought along neutro and anti-geometry, neutro and anti-algebra and many
other concepts. As a consequence, to the study of the neutro and anti-structures, the
notion of neutro-topology and anti-topology was developed by academicians in 2021.
The definitions of the neutro-topology and the anti-topology are defined on the classical
set. In this thesis, some properties of GTSs are studied with the neutro-topology and the
anti-topology. It has been found that many properties of the interior, the exterior, the
closure and the boundary that are true in GTSs are also true in the two new topologies
under study, while a few are found to be valid only with certain additional conditions on
the open sets considered in the two new topologies. However, in the case of certain
properties, no links could be established even with additional conditions that seemed
exists in those particular cases. However, further studies on the same could be done
outside the limit of this study to establish and find out such conditions, for which those
results also could be established. It took generations of mathematicians to reach a
consensus on even the current definition of a topological space, allowing the study that
had been ongoing for generations to take the form of a single agreeable shape. What has
finally been understood in the current study is that loosening classical ideas need deeper
analysis for each classically established result. More rigorous analysis might be required

to finally establish all the missing links in some of the results of this study.
1.2 Literature Review

General topology is a vast field of study that have been established by many
mathematicians over the past few generations and over the previous century, a lot of
study has been added to the study of the subject besides adding a lot of extensions, and
generalizations to the initial concepts of the subject in the initial establishment. Cantor,
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the idea of limit points, closed and open intervals or subsets of real line. These concepts
can be considered the cornerstones of modern set-theoretic topology. However, even in
the current era of the internet, where abundant resources are available online in many
different digitalized forms, it is very difficult to tract who first defined the interior,
exterior, adherent point, limit point, closure, boundary etc. of a constituent member set
of a topological space. It is very difficult to credit anyone with the initiation of these
concepts in topological spaces. However, Giuseppe Peano (1858-1932), an Italian
mathematician, can be credited for defining the terms interior point, exterior point,
boundary in the analysis of an interval in the real line before the advent of the
conception of open sets while defining a topology. The notion of interior, exterior,
closure and boundary are all well laid concepts in point set topology and can be traced
in all general topology books published by different authors over the years. The
definitions of interior, closure and boundary are found in the textbook on General
Topology by J. L. Kelley [86] first published in 1955. In the definition for a topological
space provided by Kelley [86], he defined a topology on a set to satisfy two conditions
which are the axioms of the union of subsets and the intersection of subsets. He added
that the whole set and empty set naturally belongs to the topology as they both belong to
the class of subsets of the universal set. The same type of approach of defining a
topological space on the basis of only the two axioms of union and intersection of
subsets can also be seen in [59, 64, 153]. However, in newer editions of [64] and from
[59] the axiom of the inclusion of the void set and the whole set in the definition of a
topology or topological space could be seen. In the book by Kelley [86], it has also
been observed that the empty set was not denoted by the present-day commonly used
notation or symbol “phi”, instead all throughout the book, the empty or null set was
denoted by the symbol “0”. In an earlier article by Bing [36], on analyzing conditions
for the metrization of topological spaces, the null set was denoted by the symbol “0”,
see page 185. Today, the empty set and the symbol “phi” or @are used synonymously in
literature. However, in the article “Topologies on spaces of subsets”, by Ernest Michael,
published in “Transactions of the American Mathematical Society”, Volume 71, Issue
1, pages: 152-182, in the year 1951, the empty set was denoted by the symbol “phi”,
page 153. Kelley’s book was first published in the year 1955. However, it can be found
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denote the empty set in 1939, which is a O with a slash, which eventually evolved to the
present-day “phi”. The only reason “0” might have been used is explained from the fact
that the character set of the English alphabet did not have the provision to write the
symbol used by Bourbaki, when they first formalized the concept of point set
topological space between 1935 and 1939. This fact is mentioned here only to infer that
many things have evolved in the field of study of topological spaces over the years.

The concept of a bitopological space was brought about by Kelly [87] in 1963
who defined a bitopological space to be a space having two topologies induced by two
asymmetric quasi-metrics. Patty [127], in 1967, furthered the study of bitopological
spaces and confirmed some of the results stated by Kelly and provided sufficient
counter-examples to prove that all metrization theorems that are true for a topological
space cannot be true for a bitopological space because the two topologies that are
considered to form the bitopological space do not form metric spaces simultaneously.
Pervin [128] introduced the notion of connectedness in bitopological spaces along with
the definition of continuity of functions between the spaces and analyzed six different
results in connectedness. Notion of continuity between the spaces have been used to
establish some of the results. Garner [65] defined bi-open sets in bitopological spaces
and further defined bi-closed sets, bi-interior, bi-closure, and bi-separation axioms. The
author used the concept of bi-open sets to study the hereditary properties of the bi-
separation axioms and further investigated bi-continuity and bi-convergence with the
use of the bi-open sets. Datta [52] introduced quasi-open and quasi-closed sets in
bitopological spaces and studied quasi-closure and quasi-continuity to study semi-
compactness properties in bitopological spaces. Further, studies of local connectedness,
local compactness, pair-wise compactness, and separation axioms have been studied by
many mathematicians and scholars in bitopological spaces [48, 53, 133].

Continuity of functions between two topological spaces is a well-established
concept and has been defined in many ways. Kelley [86] characterized continuity of a
function fromone topological space to another by eight equivalent definitions and
characterizations. Validation of any one of the eight characterizations given by him is
equivalent for a function betweentwo topological spacesbeing continuous. One such
characterization is the closedness of the pre-image of closed sets which can be
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The fact that a topological space has been defined with regard to open sets and as such
when only openness of sets is considered, a lot of studies has been done by various
scholars in terms of different open sets characterized by different topological conditions
and consequently the continuity of functions in terms of such open sets as defined by
various scholars over the years. Halfar [74] in 1960 studied conditions that imply
continuity of functions between spaces and studied continuity in terms of connectedness
and compactness of the spaces. Levine [95-96] introduced the conception of weakly
continuous functions by using the openness of the pre-image of open sets in the
operators on closures of the two topologies he considered and studied some properties
of weakly continuous functions and in the later article he introduced sets which were
called semi-open and defined semi-continuity of functions in terms of the semi-open
sets. Other studies that have been carried on semi-continuity can be seen in [116, 117,
136]. Studies on weakly, sub-weakly and semi-weakly continuous functions can be seen
in [25, 57, 62, 118, 123, 137]. Hussain [77] in 1966 defined almost continuous functions
in terms of openness of image of inverse image of the neighbourhood of a point.
According to this concept, continuity of a function always implied almost continuity but
not the other way around. Almost continuity has been studied by many other scholars
[98-100,137, 155]. Gentry et al. [67] in 1971 introduced somewhat open sets and
defined somewhat continuous functions and studied the properties of such continuous
functions. Noiri [119] in 1980 introduced & -closed sets and consequently its
complement, the §-open sets and subsequently defined the §-continuous functions and
proved that §-continuity implies to weakly continuity. Mashour et al. [105] in 1982
defined pre-continuous and weakly pre-continuous functions on the basis of pre-open
sets. And on the basis of the sets defined and named a-open sets, studies on the a-
continuous functions have been done in [107, 121, 122, 134, 175, 176]. Many other
scholars defined many different types of open sets and defined continuity with regard to
those open sets but the list is inexhaustible as new types of open sets and new types of
closed sets have been defined over the years and compiling all such open sets and the
corresponding continuous functions will be cumbersome.

Pavel Urysohn (1898 — 1924) is credited for making the first ever systematic
study on the axioms of separation in topological spaces. Aull et al. [21] in 1962 studied
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conditions satisfying which, a topological space will be a T, topological space and also
some other conditions satisfying which a topological space will be a T; topological
space. They also introduced some three other separation axioms, which are of the
weaker types, between T, and T;. Further, Aull [22] in 1968 defined E, and E; spaces
on the basis of the intersection of closed neighbourhoods and concluded that perfectly
normal T; and T, spaces are necessarily E; spaces. Singhal [154] in 1971 analyzed the
various separation axioms defined in topological spaces and attempted to depict the
inter-relations between them. The study also covered separation axioms in bi-
topological spaces and co-topological spaces. Maheswari et al. [104] in 1975 introduced
axioms of separation in terms of the semi-open sets and named the separation axioms as
s-separation axioms. Dorsett [56] in 1981 studied semi-separation axioms and
concluded that the properties of semi-regularity, semi-normality are not semi-
topological properties and that semi-regularity and semi-normality are independent
axioms. Dube [58] in 1982 studied the properties of compactness, local compactness,
almost compactness, and some inter-relations between those properties, in R; -
topological spaces and establish some results on the hereditary properties of locally
compact spaces. Caldas et al. [43] in 2003 conducted a study on low axioms of
separation using the concept of the §-open sets and §-closure. Study on separation
axioms in bitopological spaces have been done by various scholars some of which can
be seen in [19, 42, 108, 124, 131].

The origins of the theory of multisets can be traced to many different sources
and in different times, different terms like list, bunch, bag, heap etc. had been used by
different scholars to mean the repetition of objects in a set, which in the present day is
known as a multiset. For instance, in the article “On the theory of bags”, by Yager [187]
in 1986 where the term bag was used to represent some set-like objects, the elements in
the bags had repetitions. In the same article he defined some basic operations of
addition, union and intersection in the bag. Blizzard [37] in 1989 made a detailed study
on multisets laying the foundation for the study on multisets, the type of set where
repetition of the members is allowed, and replaced the other terms like bunch, bag, heap
etc. for good. Blizzard used the shortened form mset to denote a multiset, defined
multiplicity and cardinality of an mset and founded the binary axioms and algebraic
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multisets. According to him a classical set is a multiset where multiplicity of each
member is 1. Blizard [38] extended the study of multisets to real valued functions by
restricting the multiplicity of the elements to the interval (0,1]. Blizard [39] further
extendedthe study of multisets to the field of integers, where he proposed that the
multiplicity in a multiset can be any integral value and may thus have negative
multiplicity or negative membership in the multiset. He defined addition, subtraction,
union, intersection and other algebraic axioms in multisets with integral multiplicities of
elements. Petrovsky [129] in 1994 studied multisets and tried to define some metrics
using a theoretical model with the help of multi-criteria decision-making techniques.
Singh et al. [157], in 2007, mentioned some applications of multisets. Girish et al. [69]
in 2009 formalized the definition of a multiset by suggesting certain notations and
symbols and further introduced the notion of functions and relations in the study of
multisets and established many existing results of functions and relations in calculus to
the multiset setup. Singh et al. [158] in 2011 introduced some new operations on
multisets and further delved into the difficulties in the operations of difference and
complementation of multisets and also studied some applications of multisets. Ibrahim
et al. [79] in 2011 introduced the notion of multiset space and operations on the multiset
space algebra by introducing the operations of modulo in union, intersection and
product of multisets. They further validated the algebraic operations of closure,
commutativity, associativity, identity, existence of inverse element etc. in multisets.
Girish et al. [70] in 2012 introduced multiset topological space and defined multiset
basis for the multiset topology and further defined interior, closure, and their operators
in the multiset topological spaces. They also defined neighbourhood and neighbourhood
operator wherein they have considered the multisets as points. Girish et al. [71] in 2012
introduced the basis for a multiset topological space and named it as m-base and further
introduced the concept of closed multisets and extended the study to establishing many
results of interior, closure and limit points in multiset topological spaces, a few of which
were disproved by Zakaria in [193]. However, they further introduced continuous
multiset functions and established some results on the multiset functions. Babitha et al.
[24] studied soft multi-sets. Zakaria [193] in 2015 provided a counter example to show
otherwise one theorem and consequently one corollary that Girish et al. [71] had proved
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al. [60] in 2015 studied separation axioms in multiset topological spaces by defining
multiset separation axioms and compared results that are valid for separation axioms in
GTSs and also studied the preservation of hereditary properties of the separation axioms
they have defined. Das et al. [49] in 2016 added the concepts of exterior and boundary
to the study of multiset topological space and established some results related to the
concepts thereby enlarging the study on multiset topological spaces. Some work on
multiset bitopological spaces can be seen in [61, 150]. Shravan et al. [151] in 2018
studied generalized closed sets in multiset topological spaces and called them
generalized closed multisets and studied some of the properties that are valid in
generalized closed sets in general topology. Kumar [91] in 2020 studied two kinds of
connectedness with regard to multiset topological spaces and analyzed many results in
the study. Shravan et al. [152] defined a metric between two multi-points in a finite
multiset and studied the conditions for metrization of multiset topological spaces and
laid down various results.

Deviating from the classical set, the first definition of the set to study fuzziness
called a fuzzy set had been provided by Lofti Aliasker Zadeh [190] in 1965. In the
classical set, the members of the set are well defined, and one can either be member or
non-member of the set. But when identifying whether a particular entity is either a
member or not of a set becomes unclear, then one cannot conclude that the entity
belongs to the set or not in the strict sense. One can imagine a set, which has to be the
collection of intelligent students. Such sets are not well defined because the word
intelligent itself is not well defined. Such a set becomes a fuzzy set because intelligence
will be measured by some criteria which will rank the students in order of the score they
obtain in the testing criteria. Thus, in a fuzzy set the members possess a ranging
membership degree defined between 0 and 1. The member of the fuzzy set with
membership 0 will not be considered intelligent and the member with the membership 1
will be considered as the most intelligent, and others will have membership between 0
and 1. However, the lower and upper boundaries are not well foundedin a fuzzy set
because the criteria which were used, if changed, may result in a different set. In a fuzzy
set the logic is not only of true or false as in the case of the classical set where 0 would
mean absolute non-membership and 1 would mean absolute membership. Fuzzy sets

differ from classical probability theory in the sense that probability is an accurate
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measure between 0 and 1 but in context to a fuzzy set the membership values are vague
and not specific. In probability theory, uncertainty is measured as a subset of a given
collection of alternatives but in a fuzzy set membership in the set is not a measure but a
degree of not being completely true or completely false. In his own words, Zadeh [190]
defined the fuzzy set to be a: “class of objects with a continuum of grades of
membership” [190]. He defined a fuzzy set to be characterized by an inclusion map that
would assign every member a membership grade values from 0 to 1. He extended the
operations of containment, union, intersection, complementation, relation, convexity
etc. in the fuzzy set. He also defined the algebraic operation like sum, product and
absolute difference between two fuzzy sets besides providing detailed interpretations to
the operation he introduced to fuzzy sets. Goguen [72] in 1967 extended the study on
the fuzzy set by adding the properties of a partial order set and called the fuzzy set as L-
fuzzy set, where he replaced the unit interval of 0 to 1, by a partially ordered set or more
specifically a lattice in [0, 1] and made an in-depth study on the fuzzy operations,
relations, functions and founded many results. Chang [44] in the year 1968 with regard
to the definition of fuzzy set and other concepts provided by Zadeh, introduced the
fuzzy topology and fuzzy topological space (FTS) thereby introducing fuzzy-open and
closed sets, neighbourhood of fuzzy point, interior, compactness and continuity in the
fuzzy topology in line with properties that are valid for classical sets in GTSs. In
general topology, neighbourhood is defined for a point but Chang [44] defined the fuzzy
neighbourhood in a fuzzy set because a fuzzy point was not defined by Zadeh. Chang
[44] defined continuity of functions in context of the openness of inverse image of open
fuzzy sets in the fuzzy topology. Brown [40] in 1971 defined the membership function
into the Boolean Lattice in [0, 1] instead of the unit interval itself, and studied the set
theoretic properties proposed by Zadeh for the fuzzy sets and concluded that the set
theoretic results hold true in the Boolean lattice also. Zadeh [191] in 1972 suggested
some basic ideas to convert linguistic hedges into operators which can be acted on a
fuzzy set and in the same article he discussed operations like fuzzification,
intensification, accentuation etc. and introduced the fuzzy singleton set. De Luca et al.
[54] in 1972 studied the nature of fuzzy set and that of L-fuzzy set and tried to analyze
the algebraic properties of both the types of fuzzy sets in view of both the definitions

and realized that generalizations of the algebraic properties were not possible till that
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time because of the inability to establish the complementation of the fuzzy set in the
algebraic structure proposed by Zadeh for the fuzzy set. Nazaroff [115] in 1973 defined
interior, exterior, closure and boundary in FTSs and discussed some results. Wong [183]
in 1973 studied the different types of compactness in FTSs and found some variations in
the results from those in GTSs. Wong [184] in 1974 introduced the concept of fuzzy
point using the concept of fuzzy singleton sets initiated by Zadeh [191] and used it to
study local countability, separability and local compactness and observed slight
variations from established results in general topology because of which, results which
looked simple required elaborate proofs. Convergence in FTS became more meaningful
because of the definition of the fuzzy points. Wong [185] in 1975 extended the concepts
of point set topology to the fuzzy topology and argued that the fuzzy set introduced by
Zadeh followed similar operation like classical sets. Weiss [179] in 1975 studied FTSs
induced by a fuzzy set and the subsets of the set which may be considered as naturally
open for the fuzzy topology. He further studied the various properties of the fuzzy set
that induced the fuzzy topology, and because of the induced topology, the properties
that are true for the inducing fuzzy sets are also analyzed. Zadeh [192] in 1975
introduced the concept of linguistic variable in analyzing the fuzzy set theory and
redefined another form of fuzzy set, which he named fuzzy set of type 2, where the
grades of members in the membership function mapped to an ordinary fuzzy set in the
unit interval 0 to 1. He also defined the various algebraic operations on the new type of
fuzzy set and also various relations between the new type of fuzzy set. Mizumota et al.
[111] in 1976 studied with detailed analysis, the characteristics of the algebraic
operations with regard to the union, intersection, and complementation for the fuzzy set
of type-2. They also tried to establish a partial order relation in the fuzzy set of type-2.
Lake [92] in 1976 studied von Nuemann’s axiomatization on the fuzzy sets and
multisets. Warren [177] in 1977 studied the frontier of a fuzzy set and established many
results for the frontier of a fuzzy set. Warren [178] in 1978 introduced the notion of
neighbourhood of a point and using already founded concepts of sub-basis and closure,
established six characterizations of functions that are continuous in FTSs and further
stated that the fuzzy topology is a natural generalization of set theoretic topology.
Conrad [47] in 1980 studied continuity in the fuzzy topology and introduced fuzzy

filters and characterized convergence in the fuzzy topology with the help of fuzzy filters
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and further established equivalence between convergence and continuity. Ming et al.
[126] in 1980 tried to redefine a fuzzy point to take the form of a singleton crisp set or
anyusual point and introduced a connection between the fuzzy point and the fuzzy sets
which they named the Q-relation and defined a corresponding neighborhood system
which was named the Q-neighborhood system and used it to study convergence of
sequence and nets or Moore-Smith sequence extending the study to subnets and
subsequences. They also studied subspaces, separation axioms, and connectedness with
the neighborhood system they have introduced, in FTSs. Hutton et al. [78] in 1980
studied hierarchy of separation axioms in FTSs and some hereditary properties of the
separation axioms. Srivastava et al. [172] in 1981 studied properties of fuzzy Hausdorff
spaces. Azad [23] in 1981 introduced fuzzy semi-open (closed), regular open (closed)
sets and gave generalizations of the semi-continuous, almost continuous, and weakly
continuous mappings with respect to the fuzzy sets thus defined in FTSs and observed a
non-reversible one-way implication from fuzzy continuity to almost fuzzy continuity
and thence to weakly fuzzy continuity. Sarkar [145] in 1981 studied on separation
axioms and the hereditary properties and also established many results on compactness
in FTSs. Studies on separation axioms of different types by various academicians and
scholars in FTSs can be seen in [63, 68, 89, 159, 186]. Ming [110] in 1985 showed that
all FTSs are isomorphic to certain topological spaces and added the concept of fuzzy
dual points. He further introduced fuzzy metrics and studied fuzzy metrization on FTSs.
Yager [188] in 1987 introduced fuzzy bag or multiset and used it as another approach to
study the cardinality of a fuzzy set. Yalvac [189] studied semi-interior and semi-closure
in fuzzy sets. Li [97] in 1990 extended the study of the cardinality of a fuzzy set and
studied some applications of the fuzzy bags or multisets. Some more study in fuzzy
multisets or multi-fuzzy sets can also be seen in [148, 149].

Studies that have been made so far on the fuzzy set have been mainly focused on
the various properties of the fuzzy set as conceived by Zadeh in the year 1965 and the
FTS defined by Chang in 1968 based on the fuzzy set conceptualized by Zadeh [190,
191]. In all these studies, the subject matter was confined only on the membership
function of the fuzzy set and the related topological space. The other studies made on
the topological properties with regard to the fuzzy set had also been solely on the basis

of the ideas put forwarded by Zadeh while defining the fuzzy set for the first time. No
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thought was wasted to an entity that was not a member of the fuzzy set and even if
anyone had thought about that nothing was available in literature till 1986 until the
article by Atanassov [20] got published. However, before that, the conception of the
intuitionistic fuzzy set (IFS) had been submitted by Atanassov in June 1983 in a “V.
Sgurev Ed., VII ITKR’s Session, Sofia, June 1983 (Central Sci.—Techn. Library, Bulg.
Academy of Science, 1984)”. This information has been collected from his published
article, see references “[1]” of [20]. Atanassov conceptualized the IFS by introducing
the degree of non-membership as another component to the fuzzy set. He also defined
the interior and closure for the IFS and proved many results which are associated with
the operations like containment, complementation, union, intersections etc. on sets in
general. Gau et al. [66] in 1993 defined a vague set to be a set where every member had
a grade of membership. However, Bustince et al. [41] in 1996 concluded that vague sets
are not different from the IFSs. Coker [45] in 1997 introduced the intuitionistic fuzzy
topological space (IFTS) and further defined continuity, compactness, connectedness
and some axioms ofseparation with regard to the IFTS. Further studies of separation
axioms can be seen in [33, 34, 46, 101, 102, 156], with regard to the IFTS. Some studies
with regard to continuity and continuous functions in IFTS can be seen in [75, 76, 103].
Studies on fuzzy bitopological spaces and intuitionistic fuzzy bitopological spaces by
various scholars can be seen in [84, 94, 138, 173]. More study on fuzzy interior and
closure of a fuzzy set has been done in [26, 27].

In an effort to investigate the ambiguity and uncertainty surrounding events and
collections that the classical set was unable to fully characterize, Zadeh introduced the
fuzzy set in 1965. A certain amount of vagueness could be examined when the degree of
membership was used as a criterion of being a member of a set in the fuzzy set instead
of being fully in or fully out. This could be further improved upon by the introduction of
the non-membership function by Atanassov to form the intuitionistic fuzzy set which by
then had the components of membership as well as non-membership in the fuzzy set.
The matter of how strongly members of the fuzzy set contained or not contained to the
fuzzy set became clearer. In other words, it had become possible to determine an
entity’s membership or non-membership in a collection and the degree to which it
belonged or not belonged to the collection. However, since membership and non-

membership are degrees or grades between 0 and 1, rather than absolute numbers, it was
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still unclear whether the total or sum of the grades of membership and grades of non-
membership added up to 1 as in the context of probability theory where the sum of the
probabilities of the occurrence and non-occurrence of an event always sums up to 1. All
these impending ambiguities led to the proposal of the neutrosophic logic by
Smarandache [160] in 1998. The neutrosophic logic added a percentage of
indeterminacy to the intuitionistic fuzzy set. Consequently, Smarandache [161] defined
the neutrosophic set in 2005. Smarandache defined the neutrosophic set to encompass
three components in the fuzzy set: the truth (T), the indeterminacy (1), and the falsity
(F). Thus, a neutrosophic set has three functions to control the uncertainty. In the IFS
defined by Atanassov [20], the T was taken care of by the grade of membership and F
was taken care of by the grade of non-membership but the “I”, the indeterminate part
was lacking. In the fuzzy set initiated by Zadeh [190, 191], vagueness was studied by
only a single membership function, degrees or grades of T of the neutrosophic set.
Therefore, in order to analyze any kind of vagueness or fuzziness, it was presumed that
the neutrosophic set defined by Smarandache was complete, so as to the analysis of the
logic of vagueness. The neutrosophic set had been defined by Smarandache [161]in
order to generalize the intuitionistic fuzzy set by Atanassov [20] which itself was an
extension or improvement of the fuzzy set developed by Zadeh [190, 191]. The
conception of the neutrosophic set had been derived by Smarandache from various real-
life logics proposed by different intellects in various analysts of various real-life
situations. One such logic, which has been referred to, by Smarandache, could be the
four-valued logic, which had to be proposed by Belnap Jr. [35] in 1977, while arguing
to determine the reality of a case, when four possible conclusions had to be presented
before a jury, about the case: T (True), F (False), None, Both. Thus, as can be observed,
each of the four possibilities could be partially true as no unitary conclusion had any
proof to the particular case in context. In such a situation, the latter two components of
“None” and “Both” lead to Indeterminacy. In the context of such ambiguities, the
neutrosophic set, proposed by Smarandache, can be used to summarize the unknown or
the indeterminate component up to a certain extent in such arguments even though it has

to be agreed that in real life situations, indeterminacy worse than such cases exists.

After Salama et al. [142] in 2012 defined the neutrosophic topological space on the
basis of the neutrosophic set; a lot of attention has been deviated to the study of
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neutrosophic topological spaces, by many topologists. This is perhaps because the
neutrosophic topological spaces could be observed as aspontaneous generalization for
the FTSs as stated in [142]. Salama et al. [142] formalized the definition of the
neutrosophic set by providing proper notations and elaborated the possible arithmetic
and algebraic operations between the sets and further defined the topological properties
of containment, interior, and closure in neutrosophic topological spaces and established
many results on these topological properties. Salama et al. [143] in 2014 redefined the
neutrosophic closed set and introduced neutrosophic continuous functions and
established many topological results in continuity in the neutrosophic topological space.
Salama et al. [144] in 2014 defined the neutrosophic crisp set and basing on the new
type set the neutrosophic crisp topological space was defined and properties of interior
and closure was studied in the new type of topological space. Further, study on
continuous functions in such a topological space was conducted and the concept of
compactness was also extended to the neutrosophic crisp topology. Al-Omeri [11] in
2016 extended the study of the neutrosophic crisp topology by introducing the concepts
of neutrosophic crisp a-open, S-open, semi-open, pre-open sets and studying many of
the corresponding concepts like interior, closure and continuity with respect to the new
open sets. Karatas et al. [85] in 2016 introduced the neutrosophic interior, neutrosophic
exterior, neutrosophic closure, neutrosophic boundary and neutrosophic subspace and
studied many of their topological properties. Al-Omeri [12] in 2016 introduced
neutrosophic semi-open, pre-open, a —open , [ — open sets and studied the
corresponding continuous functions defined with respect to these open sets. Different
forms of continuity of functions have been studied by various thinkers in neutrosophic
topological spaces and can be observed in [83, 93, 132]. Studies on separation axioms in
neutrosophic topological spaces have been attempted by various scholars and can be
noticed in [01, 51, 73, 88, 109]. Multisets have been studied in neutrosophic topological
spaces by some scholars and are seen in [31, 32, 50]. Neutrosophic study of

bitopological spaces have been done by scholars in [09, 55, 114, 125].

After the introduction of neutrosophic logic [160], subsequent definition of
neutrosophic set [161]and the introduction of the neutrosophic topological space [142],
a lot of other studies are also seen to be done in algebraic structures with regard to the

neutrosophic set. Studies in algebraic structures could also be noticed by breaking up
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the components of the neutrosophic sets into three parts, namely the T (Truth), |
(Indeterminacy) and F (Falsity) which Smarandache [161] in 2005 gave the notions:
<A> for T, <Neut-A> for | and <Anti-A> for F for an idea or concept “A”. Study on the
algebras with <A> have been classified as the classical algebras, studies on the algebras
with <Neut-A> classified as NeutroAlgebras and studies on the algebras with <Anti-A>
have been classified as AntiAlgebras. Similarly, studies on geometry with the three
components of the neutrosophic set have been classified as Classical Geometry,
NeutroGeometry, and AntiGeometry. Thus, many studies evolved outside the classical
ideas with respect to the Neutro and Anti components of the neutrosophic sets.
Smarandache [162-165], introduced NeutroAlgebra and AntiAlgebra by defining the
algebraic operations of associativity, commutativity, unit element, inverse element, etc.
in terms of Neutro and Anti by citing examples on each new definition by logic thereby
laying the foundation for further studies in algebraic structures like groups, rings etc. He
used the terms Neutrosophication and Antisophication to generalize the concepts in
classical algebra to NeutroAlgebra and AntiAlgebra by defining terms like
NeutroAxiom,  AntiAxiom, NeutroTheorem, AntiTheorem, NeutroOperation,
AntiOperation etc. He claimed that the well-defined axioms and operations in classical
algebra do not always hold in real life situations. Smarandache et al. [166] studied BE-
algebras and defined neutro-BE-algebra and anti-BE-algebra. BE-algebra was first
conceptualized and studied by Kim et al. [60] in order to generalize a BCK-algebra
[82]. Further, they proposed that for any classical algebra with k operations or axioms
defined on it there will be equivalently 2% — 1 neutro-algebras and 3% — 2% anti-
algebras with respectively the same number of neutro-operations or neutro-axioms and
anti-operations or anti-axioms. Agboola et al. [02] tried to realize the concept of neutro-
algebra and anti-algebra [162] with respect to existing number systems, and found that
the set of natural number system and the algebraic operation of subtraction and division
form a neutro-semi group. With the same operations, the set of integers is also found out
to be a neutro-semi group. It was also found that rational numbers also form a neutro-
semi group with the operation of subtraction. The authors also introduced the term
neutro-field and further, it was also found that rational, real and complex numbers, with
the operation division, form a neutro-field. Further, Agboola [03] provided the formal

definition of a neutro-group having associated the term neutro-semi group with the
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classical number systems in [02]. The author presented many results on neutro-group,
defined neutro-subgroup, neutro-group-morphisms and established many results but
however found out that some of the classical results of group theory do not hold in the
setting of the neutro-group theory. Agboola [04] introduced the notion of neutro-rings
with the help of three neutro-axioms namely, additive neutro-abelian group, the
multiplicative neutro-semi group and the multiplication over addition neutro-
distributivity. The 1% isomorphism theorem of the classical ring theory stood valid in
the neutro-ring theory. Smarandache et al. [167] studied BCK-algebra [82] and
extended the study to neutro-BCK-algebra by the application of neutrosophication of
the underlying operations of the BCK-algebras. Agboola [05-07] dwelt on finite neutro-
groups and finite and infinite neutro-rings. In [07] the author introduced anti-groups
with the use of anti-operations on the operations of the classical group. Anti-operations
are operations which are exactly the opposite of the classical operations. As such,
closure law is characterized by anti-closure, associativity by anti-associativity and so
on. Of the four anti-laws for the four axioms that are required in defining a classical
group, the anti-group is defined if at least one anti-law is satisfied. Further, the author
defined that an anti-group will be anti-abelian if the anti-commutativity axiom is
satisfied. Agboola et al. [08] introduced anti-rings by defining ten neutro-axioms and
ten anti-axioms corresponding to the ten axioms of a classical commutative ring. Each
of the ten axioms included a neutro-commutativity axiom and an anti-commutativity
axiom for the operation of multiplication. Then the anti-ring is defined to be a
generalization of the classical ring satisfying some classical axioms and at least one of
the nine anti-axioms. Further, the definition says that if the axiom of anti-commutativity
of multiplication is also satisfied then the anti-ring becomes an anti-commutative ring.
Surprising results have been found in the study like sub anti-rings possesses properties
not common to the parent anti-ring and so on even if identical binary operations are
employed. Ibrahim et al. [80] introduced neutro-vector space and studied certain simple
properties of only a particular type of neutro-vector space which they called type 4S.
Ibrahim et al. [81] defined neutro-hypergroup and anti-hypergroup by neutrosophication
and antisophication of the three axioms of a classical hypergroup. They further
established that for every classical hypergroup there could be possibly seven classes of

neutro-hypergroups and nineteen classes of anti-hypergroups basing on the proposal
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given in [166]. Mohammadzadeh et al. [112] introduced neutro-nilpotent groups and
studied some of their properties and they found the quotient of the group in context and
the intersection of two such groups are also of the same group. Further, study by neutro-
homeomorphism revealed that the property of neutro-nilpotency is preserved by
homomorphic image. Al-Tahan et al. [17] studied the application of the new algebras to
Semigroups by introducing partial order relation in the Neutro-algebras. Smarandache
[168], diversified the study of the neutrosophic triplets Truth: <A>; Indeterminate:
<Neut A>; Falsity: <Anti A> on various possible studies and analysis of space, event
etc. and for any study on any structure, by neutrosophication we can always have the
component neutro-structure and by antisophication, one can always have the anti-
structure component. Analysis of any structure may be with anything like axiom,
theorem, lemma, property, proposition etc. According to him, all of them will always be
accompanied by the Neutro and the Anti components in any study or analysis.
Smarandache [169] extended the study of neutro-algebras and anti-algebras to geometry
and proposed that as non-Euclidean geometry is a result of some geometric object not
following one particular postulate of Euclid, likewise not following any other postulate
or all the postulates of Euclid would result in anti-geometry and not being able to
conclude whether a particular object follows all the postulates of Euclid would lead to
neutro-geometry. The author took the examples of Riemannian geometry and
Smarandache Geometry in establishing the concept of neutro-geometry and anti-
geometry and illustrated by providing complex geometric models. Rezaei et al. [135]
and Al-Tahan et al. [16] extended the study of neutrosophication and antisophication to
the study of Semi-hypergroups and Neutro-hyper-structures. Sahin et al. [140] in 2021
defined a neutro-metric space and discussed the basic properties of the neutro-metric,
studied various similarities and differences between the neutro-metric and the classical
metric and concluded that a neutro-metric space is obtainable from every classical
metric space. They further studied convergence in the neutro-metric spaces by defining
neutro-Cauchy sequence. Further, Sahin et al. [139] in 2021 introduced the concept of a
neutro-topological space and an anti-topological space from the concept of
NeutroSophication and Antisophication defined by Smarandache [163]. In the new
topological structures that have been introduced, the neutrosophic concept is retained

but the neutrosophic set has not been used. The study compared the new topologies with
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the general topology and concluded that neutro-topology has a more general structure
than the classical topology. They also further concluded that a neutro-topology could be
deduced from any given classical topology and further that a neutro-topology could also
be deduced from any given anti-topology.The authors finally claimed that they have

added two more structures to the study of neutro-algebra and anti-algebra.

Further, Smarandache [170] in 2022 made a conclusion that the NeutroAlgeras and
AntiAlgebras are parts of the general forms of the classical algebras and that the
classical algebra is just a part of the whole structure of algebras if to be considered from
the neutrosophic point of view. Sahin [141] defined neutro-sigma and anti-sigma
algebras by using the neutrosophication and antisophication of the classical sigma
algebra and concluded that a neutro-sigma algebra can be established from every sigma
algebra and a neutro-sigma algebra can also be established from every anti-sigma
algebra. Witczak [180] studied some properties of the anti-topological space defined in
[139] with regard to interior, closure and studied door spaces in terms of the anti-
topology and also introduced two types of continuity in anti-topological spaces which
are not equivalent to one another. The author also studied the concept of dense and
nowhere dense sets in anti-topological spaces. Basumatary et al. [30] extended the study
of topological groups to neutro-topological spaces and studied properties of group
neutro-topological spaces. Witczak [182] defined anti-minimal topological space and
the anti-bi-minimal space and studied the properties of interior and closure in the Anti
set up. Anti-bi-minimal spaces being a structure associated with two anti-minimal
structures. Basumatary et al. [29] studied neutro-topological neighbourhood and neutro-
topological base and in [28] established formulae to find the number of neutro-
topological spaces based on the number of members in the universal set on which a
neutro-topological space is defined. Polvan [130] redefined the neutro-metric space
defined in [140] by adding the properties of neutro-open sets, different from those of a
neutro-topology, to define strong neutro-metric space and established that every metric

space can be a strong neutro-metric space.

A neutro-topological space [139] is conceived as a collection of subsets of a universe in
such a way that if the empty set belongs to the collection, then the universe does not

belong to the collection and vice versa or altogether, it is not clear whether either of
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them belonged to the collection. The union and intersection of the members of the
collection may or may not belong to the collection. So, it is a structure where the
axioms of a GTS may or may not be completely satisfied. However, the empty set and
whole set will not belong to the topology simultaneously or it may be such that they
may not both belong to the topology at all since that may be indeterminable. The
inclusion of the union and intersection of the members of the collection of subsets may
also be at times indeterminable. However, study of such weaker structures had already
been done in the past, an instance may be topologies like the supra topology [106],
introduced in 1983, which also does not say anything about the inclusion of the empty
set or the intersection of the members of the collection in the topology as it is only
based on the openness the universe set and the union of the members. However, further
analyses with respect to subspace, continuity, three separation axioms, closed maps,
strongly closed maps had been studied by the authors in [106] with respect to the supra
topology. The authors remarked that every continuous function is supra continuous. The
authors also introduced supra interior, supra closure and supra boundary but did not
study their properties in details. However, the authors remarked that the intersection of
supra open sets should not be necessarily contained in the supra topology and as such
the openness of the intersection of supra-open sets does not matter for a supra
topological space. The authors agreed that some of the properties of the operators that
are valid in topology are not valid with the supra topology. The context of referring to
the supra topology in reference to the notion of a neutro topology [139] is the
comparability of the two structures with respect to the inclusion of the intersection of
members of the collection of subsets. In the neutro-topology [139], the intersection of
the member subsets may or may not belong to the collection and the supra topology
[106] is not at all concerned about the intersection of the subsets of the collection. Many
other studies [14, 146, 147] are conducted by some academicians with regard to the
supra topology over the years but the subject matter of the other studies may not be of
further interest to the context of this study and as such detailed survey has not been
provided here. Another structure which is not necessarily concerned about the union of
the subsets in the collection of subsets in the topology is the infra topology [10],
introduced in 2015. The infra-topology [10] or the infra-topological space is defined

over a universe as a collection of subsets of the universe where the empty set is open
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along with the openness of the finite intersection of the collection of subsets. The
arbitrary union or even finite union is not included in the definition of the infra topology
[10]. However, the author stated that finite union of infra-open sets need not be
necessarily infra-open. The author also stated that every general topology is an infra-
topology which is however not the case the other way around. The author also defined
infra-interior, infra-exterior, infra-closure, infra-boundary, infra-limit point, infra-
derived set on the infra-open sets and infra-closed sets of the infra-topological space and
studied their various properties that are valid in context of classical topologies and
found that some of the results are not valid in infra-topological spaces. Further, Witczak
[181] clarifies the definition of the infra-topological space as had been given in [10]
which seemed to be had been misunderstood, misinterpreted and misquoted by certain
authors in later published articles in context to the original definition which seemed to
have some ambiguity as regard to the second axiom, which created a notion of an
arbitrary collection of subsets in terms of written words and a finite collection of subsets
in terms of mathematically used notations in the same axiom. Witczak clarifies that the
mathematically shown finite intersection of the subsets should be taken for further study
on infra-topological spaces and provides a corrected definition for the same. The author
further proposed that if infinite or arbitrary intersections have to be considered at all,
then the classification should be termed as Alexandrov infra-topologies. Witczak further
goes on to correct the conclusion on the definition of infra-interior which stated that
infra-interior is the biggest infra-open set contained in the infra-interior, which could
not be true in general, as union of infra-open sets is not necessarily infra-open [10] in an
infra-topology. Witczak provides a counter-example to illustrate the claim and the error
that was inherent in the conclusion of the infra-interior of a set in infra-topological
spaces. Witczak goes on to correct some more basics in the initial results and definitions
of [10] thereby aiding in laying down a more concrete base for further studies in infra-
topological spaces by including additional logical tools for the field. Al-Shami et al.
[13] appreciated the improvements and corrections suggested by Witczak [181] and
incorporated the revised concepts to their studyon separation axiomsand continuity in
infra-topological spaces. The authors found that some of the properties of separation
axioms are not exactly the same in infra-topological spaces but rather they behave to

have other distinctive characteristics of their own. Other further studies on the infra-
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topological spaces can be seen in [13, 15]. Detailed analysis of the articles has not been
done on the other studies done by various academicians in the field of infra-topology
because the only purpose for mentioning infra-topological spaces in this thesis is to
draw the attention to the omission of the union of open sets and to provide an example
that the union of subsets of a topology may or may not belong to the topology in
context, which is the case in the case of a neutro-topology where the unionand the
intersection of the subsets of the universal set in context may or may not belong to the
collection of subsets of the topology. Thus, it may be stated that every supra topology is
a neutro topology and a neutro topology can be obtained from any infra topological
space by either the exclusion of the whole universal set or the empty set. Thus, there
exists a connection of the neutro-topology with other topologies already defined and
studied. Another topology that will be studied is the anti-topology defined in [139].
Anti-topology comes from that component of the neutrosophic study which deals with
the falsity of a subject under study. Since <A> and <Anti A> are the opposites of the
same structure, so the anti-topology had been defined as opposite to classical definition
of a topology. In other words, the axioms of an anti-topology are just the negations of
the axioms of the set theoretic topology. As such, in an anti-topology, the empty set and
the universal set under study will not be in the topology, union: whether finite or
arbitrary, will not be there in the topology and obviously the intersection of the subsets
will also not be there in the anti-topology. As such there will be nothing to compare the
anti-topology with the previously mentioned topologies of supra or infra, under
whatsoever conditions because in those two topologies at least the universe of study or
the void set belonged to the topologies and the union and intersection of the subsets
belonged to one or the other topologies separately though not together. Thus, an anti-
topology is a totally different structure and will be seen to have many interesting
characteristics. It has already been mentioned that other than [139], where the definition
of the anti-topological spaces was first mentioned, Witczak [180] had studied some
preliminary properties of the anti-topology. Basumatary et al. [29, 174] in 2023
provided the definitions of neighborhood of a point, base and sub-base in neutro-
topological spaces and also in anti-topological spaces and have compared the properties
of the aspects to that of the GTSs and they have come across many interesting results

especially in the case of anti-topological spaces. More recently, Sravani et al. [171]
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added some more studies on the anti-topology by introducing and analyzing some new
types of open sets and a partial order with regard to the anti-topology and established

many surprising results.

The current studytakes the definition of neutro-topological space and anti-topological
space that were introduced in [139] and proceed with studying some properties of the
new structures. It has been observed from [139], that even though the idea of neutro-
topological and anti-topological spaces have been deduced gradually from the concepts
of neutrosophication and antisophication, which has its roots in the neutrosophic logic,
the authors did not use the neutrosophic set as the basis for defining the two new
structures. Instead, they have used the classical sets in elaborating and exemplifying the
study. The current study will also continue to use only the classical sets whenever any
numerical justification or elaboration is deemed necessary. The first thing that is done in
the current study is to accept whatever preliminary study that has been done by the
authors of [139] and extend the study by definingand observing the properties of the
interior, the exterior, the closure, and the boundary in neutro-topological spaces and
anti-topological spaces. Further, a neutro-bitopological space is defined and the
properties of the interior, the exterior, the closure, and the boundary are studied. Neutro-
continuity and anti-continuity of functions are defined and their properties are studied.
An additional weaker form of continuity, that has been termed as weakly neutro
continuous of functions has also been introduced and properties of such continuity is
also studied. Separation axioms of some types are defined in terms of the Neutro and
Anti set up and some hereditary properties are studied. And finally, the theory of
multisets is applied to the new structures by introducing neutro-multi-topology and anti-
multi-topology in terms of multisets and the properties of interior, exterior, closure and

boundary are studied.
1.3 Aims and Objectives

The survey of literature from point set theoretic topological spaces and its gradual
development to fuzzy, intuitionistic fuzzy, neutrosophic and then to the neutro and anti-
topologies shows that very little study has been made in the field of neutro-topological
space (N-TS) and anti-topological space (A-TS). Some work related to anti-topology

has been done with regard to some of the preliminary properties of interior and closure.
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In the same work, the concept of anti-continuity has been defined in terms of the
openness of the pre-image of open sets. We will use that definition to further analyze
the properties of continuity, which has not been done or seen as done in literature. Many
studies have been relatively done in the algebras of neutro and anti, as had been seen in
literature, such as the definition and study of neutro-groups, neutro-rings, neutro-vector
spaces, neutro-field and neutro-metric spaces. Also seen in literature are the studies on
the anti-counterparts of the algebras like anti-groups and anti-rings. In comparison to
the neutro counterparts more studies on anti-vector spaces and anti-metric spaces
remain to be studied. However, our study will not be along the line of the algebras but
topological spaces. A study has been observed to have been done in group neutro-
topological space and a study has also been done to find the number of neutro-
topological spaces. Another study on ordered anti-topological spaces has been observed
as done most recently. But studies on the interior, exterior, closure, and boundary have
not been done previously in neutro-topological spaces. And even though preliminary
studies of interior and closure has been done in anti-topological spaces, we will extend
the study to add other properties in interior and closure in anti-topological spaces and
further define exterior, and boundary in anti-topological spaces and study the
corresponding properties. Continuity has been defined in anti-topological spaces
without analyzing the properties of continuity in the space, we will study the properties
of continuous functions in the anti-topological spaces by adopting the definition that
had already been proposed. Further, we will study continuity in neutro-topological
spaces by defining neutro-continuity in similar views of anti-continuity. We will also
introduce a weaker form of continuity in neutro-topological spaces. Studies on the
separation axioms have not been done in either the neutro-topology or the anti-topology.
We will define some separation axioms in both the neutro-topological and anti-
topological spaces and analyze the hereditary properties. Study of multisets have been
done in fuzzy topology and in the neutrosophic topology, we will extend the classical
set based neutro and anti-topologies to the theory of multisets and introduce multi-
neutro topological spaces (M-N-TS) and multi-anti topological spaces (M-A-TS) and
study some properties of interior, closure, exterior and boundary. Further, multi-neutro-

bitopological space (M-N-B-TS) has also been defined and the properties of interior,
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closure, boundary are studied with the use of multiset concept. By the analysis of
literature, for this research work, we have set the following objectives.

The objectives of the research work are:

(i) Observing and analysing the properties of Interior, Exterior, Closure, and
Boundary points in neutro-topological spaces.

(i) Defining neutro-bitopological spaces and observing and analysing the
properties of Interior, Exterior, Closure, and Boundary points with respect to
neutro-bitopological spaces.

(ili)  Observing and analysing the properties of Interior, Exterior, Closure, and
Boundary points in anti-topological spaces.

(iv)  Study on continuous functions in neutro-topological space, by introducing
the concept of neutro-continuous functions and studying the properties of
continuous functions in anti-topological spaces.

(v) Study on separation axioms in neutro-topological and anti-topological
spaces.

(vi)  Study on multi-neutro-topological spaces, multi-neutro-bitopological spaces

and multi-anti-topological spaces.
1.4  Research Methodology

In the research work, the definition of N-TS and A-TS are adopted and will be used to
study the properties of the N-TS and A-TS. For the purpose of studying the properties in
N-TS and A-TS, the properties of Interior, Exterior, Closure, and Boundary that are well
established in GTS will be used and corresponding studies will be made whether those
properties hold in the context of the N-TS and A-TS. Further, properties of continuous
functions that are already well established in GTS will be observed and corresponding
studies will be made to evaluate their validity in the N-TS and A-TS. Further, separation
axioms that are well established in GTS will be considered to study the same in N-TS
and A-TS.Finally, the concept of multisets will be borrowed and applied to N-TS and A-
TS in analyzing some of the properties of Interior, Exterior, Closure and Boundary in
M-N-TS, M-N-B-TS, and M-A-TS.
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1.5 Importance of the Research Work

The study of topology of a set shows that a set can have multiple topologies of different
types. The change in the conception of the notion of a set leads to an altogether different
system of analysis. Such evolutions have already taken place with the conception of the
FS which has led to a variety of study having many practical applications in many
fields. Similar conclusions can be drawn with the generalization of the study of FS to
the IFS. Further, in the case of the NS which had been established as a generalization of
the IFS, the study in the field has revolutionized the study of the FS, leading to the
expansion of analysis in real life situations, generalizing established algebras to algebras
that should hold in reality. Such generalizations of the NS led to the evolution of the N-
TS and A-TS. It has been observed from literature that whenever any new topology is
defined or introduced, the preliminary studies that are seen to be done in the new
topology are on the interior, closure, exterior, boundary, continuity of functions,
separation axioms and other basic aspects of topological spaces. Thus, since the N-TS
and A-TS have been introduced very lately and the preliminary studies had not been
done by anyone, we have taken up the work in this research work. As such the
preliminary study that has been undertaken in this study in the aspects of the interior,
exterior, closure, boundary, continuity of functions and separation axioms in the N-TS
and A-TS will be helpful in further studying the other aspects of the new topological

spaces and expand the scope of analysis in the two areas.

1.6. Preliminaries

This part provides a few preliminary notions, operations, and properties those will be
referred to in the subsequent chapters.

Definition 1.6.1 [64]

For a non-empty set X and a collection of subsets 7" of X, referred to as open sets, in

such a way that the following axioms are true:

(0.1) ¢peT andX € 7.
(0.2) IfO,eTand 0, €T thenO; N0, €T.
(0.3 IfO; € T foreveryi € 3,thenuU {0; : i € J} € T.

Then the family Talong with thethree axioms forms a topology on X and the pair

(X, T) represents a topological space (TS).

28



The formation of the topology structure is not affected with any individual processes

used in creating the family 7.

Definition 1.6.2 [64]
A subset C of a TS X will be called closed if the complement of C is a member of 7. ~

denotes the class of closed sets.

Theorem 1.6.1 [64]

The class ~ of X will form some topology on X if the statements below are true:
() 0, X €.
(ii) If C; €7, then for finite n, UL, C; €.

(iiiy Ifc, e~ foreveryiel, thenn{C;:i€l}€Er

Definition 1.6.3 [64]

Let A S X. Interior of A is defined as:cA™ =U {0:0 € A, 0 € T}. Interior of A is
union of those subsets of A which are included in the topology.

The exterior of A is the union of all subsets of the topology that do not intersect A :

A =U{0:0 S cA0ET)

Remark 1.6.1 [64]

A™ is larger than any other open set contained in A and A€ is larger than any other
open set not intersecting A. And, At = (cA) and A" = (cA)®*. Ais open if
A™ = A and A is closed if At = cA and A™ N A = @.

Theorem 1.6.2 [64]

The following are true for interior and exterior operators:

Q)int @ xlnt — x c/llnt C c/l (dqlnt)lnt dqlnt (dq N B)lnt c/qlnt N Blnt

PEXt = X0, X0 = ;A% C cA; (AL D Aint- ((A U B)?Xt = AKXt n BeXt,

(N A)™ <N (A;)™ in general.

If A € B, then A™t € B™ and At D BeXt,

Definition 1.6.4 [64]
Closure of A is defined: A =N {C:A S C,cC € T} where A S (X,T).

Theorem 1.6.3 [64]

A set A is closed if A€ = A and vice versa.
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AISO, (Dcl — (D’ xcl — x’ A C c/lCl; (uq,d)d — Uqcl; (Uq U B)Cl — c/qu U Bcl;
If A € B, then A° € B,

Theorem 1.6.4 [59]

Boundary of A is defined: A% = A N (cA) where A S X.

Also c,qcl ) (qu)cl — c/qcl \cﬂint; (qu)bd — qu‘nt U (Cc/l)int; u‘ld — c/qint U c/lbd :
cﬂint =A \.;/lbd.

Remark 1.6.2 [64]

The following holds for any A, B < (X, T):

(dqbd)bd c Jlbd; (a‘l N B)bd c g‘lbd U Bbd; (c/l U B)bd c c/lbd U Bbd;
(dqcl)bd c Jlbd; (dqint)bd c cflbd_

Theorem 1.6.5 [64]
A set A is open if A% € cA and closed if and only if A%? € A.

Remark 1.6.3 [59]

For A < (X, T) the following are true:
(l) <__,qbd — <__,qcl \cﬂint
(”) c/lbd N dqint — (Z)
(i) A% =AM UAY

Definition 1.6.5 [59]
D c X isdense in X if D! = X.

Remark 1.6.4 [59]
The statements below are equivalent:
(1) D isdense in X.
(i) Cclosedand D c C, then C = X.
(ili)  Each non-void basic open set in X has an entity of D.

(iv)  The complement of D has an empty interior.

Definition 1.6.6 [64]
If  a class of B; € X is an open basis for some 7" on X then:

M For all x € X', 3 some B €. for which x € B.
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(i) If B; and B, are members of the class .~ with x contained in their
intersection, then 3 B in .7 for which x € B € B, N B,.

The members of 7 are union of some members of ..

Definition 1.6.7 [59]
For a TS (X,7) and A c X, the induced topology 74 on A is {A N U|U € T} and is
called subspace of the TS X.

Definition 1.6.8 [113]
For two TS X and Y, a mapping # from X to ‘Y will be called continuous if for every
open set W in Y, the set #~1(W) is open in X.

Theorem 1.6.6 [113]
For the TS X and Y, and a mapping# from X to Y, the statements below are
equivalent:

(i) # is a continuous function.

(ii) For every closed subset B of Y, #71(B) is a closed subset of X.

(i) For each subset A of X, #(A) < (F(A))°.

(iv)For all x € X and open set W that contain #(x), an open set V that contain x

exists, so that #(V) c W.

Theorem 1.6.7 [113]
Consider the TSs X', Y and Z, then the following statements are always true.

(i) When a mapping # from X to Y, maps the whole of X into a single value a of
Y, then # is continuous.

(if) When A is a subspace for X then the function # from A to X'is continuous.

(iii) When a mapping # from X to Y and a mappingg from Y to Z are both
continuous then composite of # and g represented by g o # from X to Z is also
continuous.

(iv)When a function # from X to Y is continuous, with A a subspace of X, then
#|A, the function whose domain is restricted to A, the mapping fromeA to Y, is
continuous.

(v) When a mapping# from X to Y, is continuous, and Z, a subspace of Y that

contains the image set #(X), then the function g from X to Z obtained by
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restricting the domain of #, is continuous. If Z is a space having Y as a
subspace, then a map # from X to Z obtained by enlarging the range of #, is

continuous.

Theorem 1.6.8 [64]

If #, a map of X into Y is continuous, then for all W open in Y the following are true:
(i) G W) c 4t (W)
(i) 7 (W™) € F (W)™

Definition 1.6.9 [64]

A TS X is Tyspace if Va#46inX 3 open set O with:a € Obut & ¢ Oor & €

O but a ¢ 0. Put otherwise, O contains one of x and y but not the other.

Definition 1.6.10 [64]
A TS X is Tyspace if Va # 4 in X 3 open sets 0, and O, so thata € 0,4 ¢ O, and
& € Obv a $ 0{,.

Remark 1.6.5 [64]

Every space that satisfies T; axiom satisfies the T,, axiom.

Theorem 1.6.9 [64]
A TS X is a T, space if each of the statements below are true:
(i) Every singleton set {a} is closed.
(i) For any A and some open B so that A € B,then 0, N B = A.
(iii) Ifa €0, forall 4, thenn 0; = {a}.
(iv) IfA < X,then A =U {C:C is closed in X}.
(v) If A+ @,thenA 2 C # @andCisclosed in X.

Definition 1.6.11 [64]
A TS X is T, or Hausdorff space if Va # 4 in X 3 open sets 0, and O, such that 0, N
O, =0anda € 0, and & € 0,

Remark 1.6.6 [64]

Every T, space is a T; space.
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Remark 1.6.7 [64]
All the properties in Theorem 1.6.9 holds true for a T, space because of Remark 1.6.5.

Theorem 1.6.10 [64]
A TSisaT, if intersection of closed sets that contain the pointa is the set {a}.

Definition 1.6.12 [64]
A TS is called a T; space when for a closed A and a point & & A there exists open sets

O4yand Oy sothat O, N0 =Qand A S 04 and & € Oy.

Theorem 1.6.11 [64]

If a TS satisfies T, and T axioms then it is a Hausdorff space

Theorem 1.6.12 [64]
A TS X is a T space if the following holds in X:
(i) For any non-void open O and any x € 0,3 open O, so that x € 0, S
0, co.
(i) For all closed A, intersection of closed sets that contains the set is the set
itself.
(ili)  For any A and a set B, which is open and satisfies A N B # @ 3 O, which is
opensothatA N O # @ and O € B.
(iv)  For every non-void A and closed Bwith A NB = @,3 open O, and Oz
with 0, N 0 = @ sothat A N O 4 # @ with B < Ogp.

Definition 1.6.13 [64]
A TS Xwill be classified as a T, space if for closed sets A and B,and A NB = @, 3
open sets 04 and Op with 04 N Oz = @, such that A € 0, and B € 0.

Theorem 1.6.13 [64]
If a TS satisfies the T;and T, axioms, then it also satisfies T, and T; axioms.

Theorem 1.6.14 [64]
A TS is T, if and only if for all open set O and all closed A < O there is an open 04 so

that A € 04 € 0,45 O,
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Definition 1.6.14 [190]
A mappingA: X — [0,1] defined on X defines a fuzzy set overX’, and the function A is
termed as a membership function and u 4, (x) is membership grade for the member .

A fuzzy set is also represented as A ={(x,uﬂ(x)) :x € X}, with every pair

(x, 1.4 () ) being called a singleton.

Definition 1.6.15 [44]
A collection of fuzzy subsets 7" of X called fuzzy open, is called a fuzzy topology (FT) on
Xif the following three axioms are true:

(i) 07,17 €T.

(i) Ui U; € T ofanyclass {U;:i € 7}.

(ili)  ForU,and U, € T, the fuzzy set U, N U, € T.

Then (X, 7) is termed as a FTS. The very existence of 7 in [0,1] necessarily implies

that 07 and 1+ are both openin 7.

Definition 1.6.16 [84]
A fuzzy bitopological space is a triplet (X, 73, 75), where 7; and 7, are FTs on X.

Definition 1.6.17 [161]

If 7,7, Fare real subsets of ]0~, 17 [, with:

n_supremum = sup T +sup 7 +sup F and n_infimum = inf T +infJ +infF, where
T,3,F are called the neutrosophic components.

If A is a set contained in X, thenx € X is identified with regard to the set A as a
value associated with the triplet: x(T, 7, F) and will be associated with A as follows: it
will be t% true in A, 1% indeterminable (unknown) in A, and % false, where t ranges

inT,irangesind, f ranges in F.

[142]In other words, A = {{x, U4, 0.4, V4): x € X}, where T,7,F: X — [0,1] satisfying
the criteria: 0 <uy+o04+v4 <3 and u,(x),04(x), and y4(x) stands for the
membership grade, indeterminacy grade and the non-membership grade respectively

for each member x € X in the set A. Other ways of expressing the set A are: A=

( € X).

pe
U (0,02, ()

X
————:x e X)orasA =
T F@) ) (
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Definition 1.6.18 [142]

For a non-empty set X and a collection Ty of neutrosophic subsets in Xif:
(i) Oy, 1y € Ty
(i) Ay NnA, €Ty whenever A, and A, are members of Ty.

(ili) U A; € Ty for any arbitrary collection {A;:i € 7} € Ty.

Then T'is a neutrosophic topology for X and the pair(X,Jy)becomes neutrosophic

topological space and members of 7, are neutrosophic open sets.

Remark 1.6.8 [139]
The symbols " =; " and " €; " are used to denote respectively circumstances when

“equal to” and “member of” are not sure or not properly defined.

Definition 1.6.19 [139]
For a non-empty set X', and a class 7" of subsets of X, if one or more of {i, ii, iii} below
are true, then 7"becomes a neutro-topology (N-T) on X and the pair (X, T)will becalled
a neutro-topological space (N-TS).

(1) [@ and X ¢ T simultaneously] or [@,X €; T]

(i)  Forp, €T; for finiten, N,_, p, € T and for other q,, 1, € T, for finite

n; [ Ng=1qq € T or (Ng=1 7, € T)]
(ili)  For p, €T, Uyser Pq €T, | being an arbitrary index set, and for other

Qo Ta € T' [UaEI 9a e T or (Uael Ta eI T)]

Remark 1.6.9 [139]
If none of {i, ii, iii} above are true then a N-TS follows the axioms of GTS and as such

N-TS have wider scope in terms of structure than GTS.

Theorem 1.6.15 [139]
If T'is a classical topology on X, then, 7\ @ isa N-T on X.

Theorem 1.6.16 [139]
If T'is a classical topology on X, then, 77 \ X'isa N-T on X.

Remark 1.6.10 [139]
From the above two theorems it can be concluded that a N-T is deducible from any

general topology.
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Definition 1.6.20 [139]
For a non-void set X and T, a class of subsets of X, if the conditions {i, ii, iii} are true,
then T becomes an anti-topology (A-T) on the setX and (X,7) becomes an anti-
topological space (A-TS).

(i) 0,X&T

(i)  Forallqi,92,93---,9, €T, (N]=; q; € T), n being finite.

("I) For all 91,492,93,---,qn € T! (UiEI qi ¢ T)

Theorem 1.6.17 [139]
For every A-T T onaset X, 7 U @ is aN-T on the set X.

Theorem 1.6.18 [139]
For every A-T 7 onaset X', 7 U Xis a N-T on the set X.

Definition 1.6.21 [174]
For a N-TS (X, 7)), if x € X, a subset O of X is called a neutro-neighborhood of x iff
there is a neutro-open (N-O) set M satisfyingx € M € 0.

Definition 1.6.22 [174]
For a N-TS (X,7), a non-empty sub-collection B of subsets of X will be called a
neutro-base for some N-T, provided the following conditions are true:
(i) fBcT
(i) For each point x € X and each neutro-nbd O of x there exists some B € B
sothatx € B € 0.
(iiiy IfA €T, thencA =U{B:B € B; B € A}

Definition 1.6.23 [174]
For a N-TS (X, 7)), if x € X, a collection B* of subsets of X will be called a neutro-
sub-base for the N-T 7,if B* < T and finite intersections of the members of B*forms a

neutro-base for T.

Definition 1.6.24 [180]
For two A-TSs(X,7;) and (Y,7;), a mapping # from X to Y is said to be anti-

continuous if and only if for any Q € 7, #71(Q) € 7.
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Definition 1.6.25 [180]
For two A-TSs(X,7;) and (Y,73;), a mapping # from X to Y is said to be anti-
continuous if and only if for any 7,-A-CS €, #71(C) is 7;-A-CS.

Definition 1.6.26 [70]

A multiset M, written in short as m-set or mset, formed from the elements of a set X is
defined as a function count M or, alternately C,;: X — N; here N is the set of natural
numbers. If X = {xq,x,, x3, ..., X, } then Cy(x) denotes the multiples of x € X that

my; mp; mg

appear in M and is written as M = { %} where m; denotes the
n

x1 " xp " x3
multiplicity of occurrence of x; in M. Elements of X that do not appear in the m-set M
have count zero.
Operations on multisets A and B:

(i) A=Bif andonlyif C,4(x) =Cg(x) foreveryx € X.

(i) D = AUBIiff Cp(x) = maximum{C 4 (x),Cg(x)} for every x € X.

({[i)D = ANBiff Cp(x) = minimum{C 4(x),Cgz(x)} for every x € X.

Definition 1.6.27 [70]
M *stands for the root set of M, and is asubset of X and is defined asbyM™* = {x €
X: Cyp(x) > 0} Itis also called the support set.

Definition 1.6.28 [70]

An empty m-set is defined as Cy,(x) = 0, for every x € X'and is denoted by @.

Definition 1.6.29 [70]
An m-set space [X']"contains all m-sets having members from X in such a way that all

members appear at most n times.

Definition 1.6.30 [70]

An mset B is termed a submset of A iff Cz(x) < C,4(x) for all x € X.

Definition 1.6.31 [70]

Let A € [X]™ be an m-set, then we have the following definitions:
I. P(A) is the power mset of A, and all submsets of A belongs to P(A).
ii. P*(A) is the power mset of the support set of P(A).
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Definition 1.6.32 [70]
Let M € [X]" and T is a sub-class of P*(M), then Twill be a multi-topology or m-
topology if:
I. Mand@areinT.
ii. Arbitrary union of classes of the msets of Tbelongs to 7.
Iii. Finite intersection of sub-classes of msets of T’will be in T.
The members of T are termed open msets with the corresponding complements being

termed closed msets and the m-topological space will be written in short as MTS.

Definition 1.6.33 [70]
The m-complement of a submset V' in an MTS (M, T) is denoted and defined as V¢ =
M © N ,where M © N = max {Cypr(x) — Cp(x),0}.

Definition 1.6.34 [70]
Given a submset A of an MTS M in [X]", then
I. The interior of A is defined as: C,ine(x) = Cyp(x), Where B is open and
B C A.
ii. The closure of A is defined as: C ja(x) = Chp(x), where D is closed and

AED.

Definition 1.6.35 [49]
Given a submset A of an MTS M in [X]™, then
i. The exterior of A is given by: C gexc(x) = C(,qine(x) for any x € X.

i The boundary of A is given by: C zpa(x) = C et (o gt (X) VX € X.
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