CHAPTER 2

Properties of Interior, Exterior, Closure, and Boundary in

Neutro-Topological Spaces

In this chapter the notions of interior, exterior, closure, and boundary are defined in
neutro-topological spaces (N-TS) and the various properties of these aspects that are
generally true for GTS are inspected. Whenever certain existing properties deviates
from the classical properties, conditions for their validation are provided to justify the
deviations in the properties or necessary counter examples are provided to justify the

claims.

Proposition 2.0.1
For a non-empty set X and a collection 7" of subsets of X, called neutro-open set (N-
OS), T is a neutro-topology (N-T) and (X, T) is a neutro-topological space (N-TS) if
any one of the following is satisfied:

(i) The null-set (@) or the whole set (X) is not in the collection 7.

(i)  There exist some members of 7 whose union does not belong to 7.

(ili)  There exist some members of 7 whose intersection is not a member of 7.

Example 2.0.1
If X = {p,q,r,s} with T = {{p}, {s}, {p, q}, {q, 1}, {p, q, 1}, X'}. Here (X, T) is a N-TS as
can be seen from below:

(1) The null set is not N-O.

(i)  {p} {s} e X but{p}u{s}={ps}&X.

(iii) {pab{qr}eTbut{p,gtn{qri={q}e&7.

Remark 2.0.1

The union of N-Ts need not always be a N-T. It can be seen by the example that follows:
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Assume X = {1,2,3,4} and consider 7; = {{1},{4},{1,2},{2,3},{1,2,3}, X} and T; =
{0,{2},{3},{1,3},{1,4},{2,3,4}} to be two N-Ts on the set X.

Then, 7; U T, = {@,{1}, {2}, {3}, {4}, {1,2},{1,3},{1,4},{2,3},{1,2,3},{2,3,4}, X} is not
a N-T on X because both @ and X simultaneously belong to 7; U 7, and it contradicts

(i) of the proposition 2.0.1.

2.1 Interior in Neutro-Topological Spaces

Definition 2.1.1

Let (X, T) be a N-TS on the set X and A < X, then the neutro-interior (Nu-interior) of
A is defined as the union of the subsets of A which are N-O and it is denoted by
ANV That is, AVY M =U {U;: U; € A and each U; is N-OS}.

Proposition 2.1.1
If A is a N-OS then AN*=t = 4,

Remark 2.1.1
Ina N-TS X and for any A c X, AN~ need not be the largest N-OS contained in A.
This fact is because, in a N-TS, the union of N-OS need not be necessarily N-O. The
following example may be considered:
Consider X = {1,2,3,4} and T = {{13},{4},{1,2},{2,3},{1,2,3}, X} and consider A =
{2,3,4} then AN¥Int = {4} U {2,3} = {2,3,4} = A. However, A is itself not an N-OS.
The above example also reveals that the converse of proposition 2.1.1 is not true. That
is, if ANt = 4 then A need not be necessarily N-O.
Proposition 2.1.2
Let (X,T) be aN-TS and A, B € X then the following results are true:

(i) ANu-int ¢ g

(i) xNu-int C x, gNu-int — ¢

(iii)  (ANu-intyNu-int — gNu-int

(iv)  If A S Bthen AN¥-Int ¢ BNu-int,

(V) (A N B)Nu-int C gNu=int  gNu-int

(Vi) c/qNu—int U BNu—int c (cﬂ U B)Nu—int.



Proof:

(1) Consider an element x that belongs to the Nu-interior of A then x is
contained in some N-OS B which is itself contained in the set A and hence
the result.

(i) By (i), xNuint c x,

By (i), oV*~"t € @ and @ € @N¥~"t and so, @NUINt = @,

(i)  Let AN =Y =U {U;:eachU;is N-OS }, then (ANw InH)Nu-int —
(UW)N¥~t =y {U;: each U; is N-OS} = U = ANU~E,

(iv)  We have by (i) AV~ € A c B and hence AV~ € B. Now, AN¥~Int
is @ N-OS which is contained in B and so it will either be the Nu-interior of
B or contained in the Nu-interior of B. That is, AN4~ "t = gNu-int or
ANu-int c gNu-int c B |n ejther case, ANY~IMt < BNu-int jf 4 c B,

(v) The fact that A NB S A with (iii) above will give: (A N B)Nu=nt ¢
ANV and ANB S B with (i) gives: (A N B)Nw-int ¢ ghu-int
thereby showing that (A N B)Nu—int ¢ fNu-int o ghu-int,

(Vi)  Letx € ANu-int y BNu=int 5 4 g gNu=int gp 4 g BNu-int
>x€Q040,CAMNMxEQr EB>x€Q,UQ3 S AUB

= x € (dq U B)Nu—int and hence quu—int U BNu—int c (c/l U B)Nu—int.

Remark 2.1.2

Equality will not hold in the relation XN¥~"t < X of (ii) in general. This is because in
aN-TS (X,T), the set X may not be N-OS and union of all the subsets of the N-TS may
also be not equal to X. The following example may be considered. Let X = {1,2,3,4}
and T = {0, {1},{3},{1,4},{1,3,4}}. Then it is clear that (X, T") is a N-TS and it can be
seen that XN¥=int = (1,34} =+ X.

In the case of GTS equality holds in case of the result (v) which however is not the case
in N-TS, and the following example illustrates the fact. Consider X = {1,2,3,4} and let
T ={0,{1},{1,2},{2,3},{3,4}} then obviously (X,T) is a N-TS. Let A = {3,4} and
B = {2,3} then ANB={3} and (A NB)N*"" =@  Also, AV " = (3,4} and
BNu—int — (2.3 1 s0 ANU-Int 0 BNu-int — (33 Thys, it can be seen that in the case of

aN-TS (A N B)Nu—int o gNu=int o gNu=int jn general.



Remark 2.1.3
The reason for (v) of proposition 2.1.2 not holding for the equality sign unlike in the
case of GTS is because intersection of N-OS may not be always N-O. Thus, if the
intersection of N-OS is N-OS in a N-TS then the properties of interior become analogous
to that of GTS.

Definition 2.1.2
If (X,T)is an N-TS, and A, B € X, then the neutro-interior operator on the space X
is a function: Nu — int: 3(X) - 3(X) that satisfy:

(i) xNu=int ¢y or, gNu—int — @

iy ANMEc

(iif) (ANu=—intyNu=int — 4

(iV) (a‘l N B)Nu—int C c,qNu—int N BNu—int

(V) quu—int U BNu—int c (c/l U B)Nu—int

2.2  Exterior in Neutro-Topological Spaces

Definition 2.2.1

Let (X,T) be a N-TS on the set X and A < X, then the Neutro-Exterior (Nu-exterior)
of A is defined as the union of subsets of ccAwhich are N-OS and is denoted by
ANv=ext - That is, ANYe* =uU {V;:V; € cA and each V; is N-OS}. We define:
XNu—ext — @ and @Nu—ext =X.

Remark 2.2.1
ANU=eXt s the union of all subsets of the N-T that do not intersect A. Thus, AN%~¢*t js

larger than any other N-OS not intersecting A.

Proposition 2.2.1
Let (X, T) be a N-TS on the set X and A, B € X, then the following are true:
(l) oqNu—ext C cA
(i)  ANUexXt = (cq)Nu-int
(i)  ANUEXt = [g(ANU-ext)Nu-ext
(iv) ANu—int — (coA)Nu-ext
(v)  IfA S B, then ANU~ext o ghu-ext

(Vi) (cﬂNu—ext)Nu—ext - quu—int



(Vii) (c/l U B)Nu—ext c quu—ext N BNu—ext
(VIII) cﬂNu—ext U BNu—ext C (cfl N B)Nu—ext
(ix)  If A isa N-CS then AN*~¢Xt = cA

(X) quu—int N c;lNu—ext — @

Proof:
(i)  ANvExt = (cA)NUInt C A by the definition of Nu-interior.
(i) By definition: AN*~¢*t =y {V;: 1V} € cA and each V; is N-OS}
= (ccA)N*=Int py definition of Nu-interior
(iii)  We have: [c(ANu—ext)|Nu-ext
— [c(cﬂ)Nu—int]Nu—ext’ by (”)
— [C{C(ccﬂ)Nu—int}]Nu—int’ by (ii)
— [(Cﬂ)Nu—int]Nu—int
= (cA)Nu=t oy proposition 2.1.2 (iii)]
= ANu—ext
(iv)  We have: (ccA)Nu—ext
=U {V;:V; € ¢(cA) and each V; is N-OS}
=U {V;: V; € A and each V}; is N-OS}
— quu—int_
(v) We have: A € B = c¢B S cA
= (¢B)Nu~nt c (cA)NUI [by proposition 2.1.2 (iv)]
= BNu—eXt C CANu—ext
(vi) By (i) since AN¥"¢¥t C cA s0 by (v) we have:
(quu—ext)Nu—ext D (qu)Nu—ext
= (ccAYNHI [y (ii)]
= cANu—int
Hence (CANu—ext)Nu—ext - c/qNu—int_
(vii)  We have (A U B)Nu~ext
— (C(c/l U B))Nu—int
= (cA N cB)Nu-int

c (cA)YNU=Int 0 (¢B)NU=int [by proposition 2.1.2 (V)]
— c/qNu—ext N quu—ext



Hence, (c/l U B)Nu—ext C cﬂNu—ext N BNu—extl
(viii) We have: ANu-ext y gNu-ext
= (cA)YNu=int y (cB)Nu-int
C (cA U cB)N¥=nt [hy proposition 2.1.2 (vi)]
= (¢(A N B))Nu-int
= (A N B)Nuext,
Hence, quu—ext U BNu—ext C (c/l N B)Nu—ext
(ix)  We have AN¥ ¥ = (cA)N“" I = A since, if A is N-CS then cA is N-
OS and so (ccA)N4~t = c.A. Hence the result.
(X) Let x € tANu—int N quu—ext
Then x € AN¥~ 1 and x € AN¥e*
= x € AVt € A and x € (cA)NUINE
= x € AV € A and x € (cA)NI C cA
= x € A and x € cA which is however not possible as A N cA = 9.

Hence. ANu-int o gNu-ext — 0.

Definition 2.2.2
Let (X,T) be a N-TS, and A, B < X, then the neutro-exterior operator on the space X
is a function: Nu — ext: 3(X) — 3(X) that satisfy:

(I) X Nu—ext — @ or @Nu—ext =X

(iiy ANvextccA

(III) ANu—ext — (C(cﬂNu—ext))Nu—ext

(iv) (AU B)Nu—ext c pgNu-ext o pNu-ext

2.3  Closure in Neutro-Topological Spaces
Proposition 2.3.1
Let (X, T) be any N-TS, then any one of the following (i), (ii) or (iii) will satisfy in the
N-TS:
(i) Either the null set (@) or the whole set X is not a N-CS.
(i) Union of some members of 7" is not N-CS.

(ili)  Intersection of some members of 7" is not N-CS.



Definition 2.3.1
Let (X,T) be a N-TS with A € X, then the neutro-closure of A will be the intersection
of the N-C supersets of A and will be written in short as Nu-closure and denoted by
ANl Thus, AVt =N {W: A € W and W is N-CS}. We define: XN¥=¢t = X
and ¢Nu—cl — (D

Proposition 2.3.2
If A is a N-CS then AN*~¢t = 4,

Remark 2.3.1

The converse of the above proposition may not be true and can be observed from the
example that follows. Let X = {1,2,3,4}and T = {0, {1}, {2,3},{3,4},{2,3,4}}. The N-C
subsets are: X,{2,3,4},{1,4},{1,2},{1}.

Consider A = {2}, then we have AV~ = {2,3,4} n {1,2} = {2} = A. But A itself is
not a N-CS.

Remark 2.3.2
The Nu-closure of a subset A of a N-TS (X, T) is not the largest N-CS that contain A.

This can be seen from remark 2.3.1.

Proposition 2.3.3
Let (X,T) beaN-TS and A, B < X, then the following are true:

(i) A € ANuC

(i) (ANu—clyNu=—cl — gNu—cl

(iii) A S B=> ANucl c BNu—cl

(iv)  ANu=cly BNu=cl c (4 y B)Nu-cl

(v) (A N B)Nu~cl ¢ gNu—cl  gNu~cl

Proof:

(1) By definition 2.3.1.

(i)  Wehave AN* ¢t =n{C: A S Cand W is N — CS} = B (say). Here B is the
smallest superset of A. If B is N-CS, then B¥%~¢! = B by proposition 2.3.2
and we have the result. However, if B is not N-CS, which is possible by
remarks 2.3.1 and 2.3.2, then BN“~ ¢l =n{£&: B S Eand Eis N — CS} =n
{F: A< FandFisN — CS} = B, because B is the smallest superset of A



and there will be no other supersets other than those that are larger than B
and all of which are supersets of A.
(iii)  We have by (i) A € AN¥ ¢ and B € BNu~<L,
Now, BN4=¢t =n {€: B C &; £is N — CS}
Now, A € B = AN =n{F: A S F,FisN —CS}
CN{E&EBCEFCE EisN —CS}
= BNu-—cl
Hence, AN¥~¢t ¢ BNu-¢l,
(iv) By (i), A S AUB > AV C (A UB)NC

Also, B € AU B = BN~ c (A UB)N*

Hence AN“~¢t y BNu=¢l c (A U B)V*~¢! and hence the result.
(v)  By(iii), ANB S A = (ANBN gV

Also, ANB S B = (ANB)N ¢ BVu=ed

Hence (A N B)Nu—ct c ANv=¢l n BNu=¢land hence the result.

Remark 2.3.3

From theorem 1.6.3 we have: A U B¢ = (A U B)<, but proposition 2.3.3 (iv) shows
that the equality does not hold in the case of N-TS and can be seen from the example
below:

Consider X = {1,2,3,4,5} and T = {0, {1}, {2}, {4}, {1,3},{2,5},{1,2,3},{2,3,5}, {2,4,5}}
where the N-CS are: X,{2,3,4,5},{1,3,4,5},{1,2,3,5},{2,4,5}, {1,3,4}, {4,5}, {1,4}, {1,3}.
Consider A ={1,4} and B =1{2,5}, then AV ={14} and BV =Xn
{2,3,45}n{1,2,3,5}n{2,4,5} ={2,5} and as such AN yBNu= ={14}u
{2,5} = {1,2,4,5}. Now, A U B = {1,2,4,5} and as such we have (A U B)N'= = Xx.
Hence, AN%~¢t y BNu=¢l = (A U B)N¥—<L,

Definition 2.3.2
Let (X,7) be a N-TS and A, B € X, then the neutro-closure operator on the space X
is a function: Nu — cl: 3(X) — J(X) that satisfy:

(i) xNu=cel = x or, pNu—cl = @

(i) A C AN

(III) c,qNu—cl U BNu—cl c (c/l U B)Nu—cl



(iV) (quu—cl)Nu—cl — ANu—cl

Proposition 2.3.4
If (X,T)is a N-TS with A < X, the we have the following relations between the Nu-
interior and Nu-closure:

(i) C(quu—int) = (cA)Nuel

(ii) (Ccﬂ)Nu—int — C(C/ZNu—Cl)

(i) ANw-int = c((cA)NH=<h

(iv) C((qu)Nu—int) = ANu-cl

(v) (A\ B)Nu—int = ANu-int \ BNu—cl

(vi) (A \ B)Nu~cl = gNu~cl\ BNu—int

Proof:

(i) We have: AN~ =y ©; so that each 0; is N-OS and 0; € A.
Thus, c(ANY8) = ¢(U 0;) so that ¢(0;) 2 ¢(A)
or, c(AN¥) =n (c0;) so that each c0; is N-CS and c(A) < ¢(0;)
or, c(AN¥=t) =n ¢; so that each ¢; is N-CS and ¢(A) S C;
Or, c( AN = (cA)NEe!

(i)  We have: AN%~¢ =n ¢; so that each C; is N-CS and A € C;.
Thus, c(AN“=Y) = ¢(n G;) so that c(A) 2 ¢(C;))
Or, c(AN*=Y) =u (cC;) so that each cC; is N-OS and ¢(C;) S c(A)
or, c(AN¥=¢Y) =u (0;) so that each 0; is N-OS and O; S c(A)
Or, c(AN=C) = (cA)YNu-int

(iii)  We have (ccA)V*~¢t =n ¢;, where eachC; is N-CS and cA € C;.
S0, c(cAYN4=¢t = ¢(Nn €;) so that c(cA) 2 cC;
or, c(ccAYN¥=¢t =u (cC;) so that each cC; is N-OS and cC; € A
or, c(cAYN=¢t =u (D;) so that each D; is N-OS and D; € A.
or, c(cA)NVu—cl = gNu-int

(iv)  We have (ccA)N¥~"t =y B; so that each B; is N-OS and B; S cA
S0, c((cA)NU=nty = ¢(U B;) so that each B; is N-OS and B; S cA
or, c((ccAYN¥=t) =n (¢B;) so that each ¢B; is N-CS and ¢B; 2 c(cA)
or, c((ccA)N¥=mt)y =n (E;) so that each C; is N-CSand A S C;.



or, c((cA)NU-inty = Nu=cl
(v) We have; ANU—int \ gNu—cl = gNu=int (y o (pNu-cly
= ANu=Int (y (cB)NU-Int [hy (ii)]
2 (A N cB)N* [by proposition 2.1.2 (V)]
=(A\ B)Nu—int
Hence, (A \ B)Nu-int  gNu-int \ gNu—cl
Conversely, let x € ANU=nt \ BNu=cl = x € gNu=int hyt 4 ¢ BNU—¢l
SxEAbDUt x¢B>x€A\B=>x € (A\B)NM as x € ANVUTI
and so we have AN¥nt \ BNu-cl c (4 \ B)N¥"I"t and hence the result.
(vi)  We have: (A \ B)N* ¢ = (A N cB)NVu¢
c ANu=Cl 0 (¢B)Nu= [by proposition 2.1.2 (V)]
= ANU=CL  ¢(BNU=int) [hy (i)]
= ANu=cl \ gNu-int
Thus, (A \ B)N¥ ¢l  ANu~cl\ pNu-int,
Conversely, let x € ANY=CL\ BNU~Int = 5 g ANU=cl gyt x ¢ BNU-t
>x €A hutx ¢ B= x € (A \ B)V* L since x € ANUC

Thus, AN¥=¢t\ BNu=int < (4 \ B)V“=¢l and hence the result.

Definition 2.3.4
A N-TS (X, T) will be called a neutro-door space if and only if every subset of X is
either N-OS or N-CS.

Example 2.3.1
Consider that X = {1,2,3} and T = {0, {3}, {1,3},{2,3}} then (X,T) is a N-TS as X ¢
T and the N-C subsets are: X, {1,2}, {2}, {1} and thus (X, T') is a neutro-door space.

Proposition 2.3.5

For every door space (X,7), (X,T \ X) will be a neutro-door space
Proof:

If (X,T)isa GTSthen (X, 7 \ X) will be a N-TS.

Proposition 2.3.6
For every door space (X, 7)), (X,T \ ©) will be a neutro-door space.
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Proof:
If (X,7)isa GTSthen (X,T \ @) will be a N-TS

Definition 2.3.5
If (C,T) be aN-TS, A € X is called neutro-dense in X if AN4~¢t = X.

Proposition 2.3.7

If (X,T) be a N-TS, A S X be neutro-dense in X, then if B is N-CS and A < B, then
B=X.

Proof:

By proposition 2.3.3 (iii), we have A € B = AN¥ ¢ c BNu~¢l = X C B, since A is

neutro-dense in X, and BY¥~¢! = B, since B is N-CS and as such B = X.

Proposition 2.3.8
If (X, T) isaN-TS, A € X is neutro-dense in X, then (ccA)N¥ "t = @,
Proof:

By proposition 2.3.4 (ii), we have (cA)N¥~t = ¢(AN¢l) = ¢(X) = 0.

Proposition 2.3.9

If (X,T)is a N-TS, A € X is neutro-dense in X, then B N A # @ for any non-empty
N-OS B.

Proof:

We have B € BV¥~¢l ¢ X = B c BNu~<l € AN¥~¢l = B € AN“~¢l which means that

thereisaN-OSCsothatB<S C € ANl = BN A # Q.

Definition 2.3.6
Let (X,7) be aN-TS, A S X is called neutro-non-dense if (AN¥—cHNu=int — g

Example 2.3.2

Consider X = {1,2,3,4,5} with T = {0,{2},{4},{1,2},{2,3},{3,4}} , when (X,T)
becomes a N-TS and the N-CS are: X, {1,3,4,5},{1,2,3,5},{1,4,5},{1,2,5}. Assume that
A = {1,3}, then AN* ¢ ={1,3,4,5}n{1,2,3,5} = {1,3,5} and (ANv-cHNu-int — g

Hence the set A = {1,3} is neutro-non-dense.

11



2.4 Boundary in Neutro-Topological Spaces

Definition 2.4.1

For a N-TS (X,T) and a subset A of X', the neutro-boundary of A, denoted by
ANu=PA s defined as ANYPE = ANUCL N (ccA)VCL In other words, the neutro-
boundary of A consists of all those points that do not belong to the neutro-interior or

the neutro-exterior of A.

Example 2.4.1

Let X ={1,2,3,4} and T = {0,{1},{1,2},{2,3},{3,4},{2,3,4}}, then(X,T)is a N-TS
where the N-CS are: X, {2,3,4}, {3,4}, {1,4}, {1,2}, {1}.

Let A = {2,3}, then ANt = {23}, cA = {1,4}, (cA)NV ™ = {1}.

So, ANu=ext = {1}. Also, AN*~¢t = {2,3,4} and (ccA)V* ¢ = {1,4}.

Thus, AN¥=Pd = ANu=cl n (cA)Nu=cl = (4},

Proposition 2.4.1
If A is any subset of a N-TS (X, T") then the following are true:
(i) ANu-bd — C(CANu—int U quu—ext)
i — pgNu-int Nu—ext Nu-bd
i X=A UA UA
Nu—-bd _ gNu-—cl Nu—int
@) A A \ A
(iV) quu—int U (qu)Nu—int — C(c/lNu_bd)
(V) quu—int =A \CANu—bd

(Vi) ANu-cl — gNu-int ; gNu-bd

Proof:
(i) By definition, if x € ANY*~b4 then x & AN~ and x ¢ ANVt
S ox € quu—int U quu—ext
& x € c(ANVint y gNu-exty
Hence, ANU~bd = c(ANU-int y gNu-ext)

(i)  From (i) we have: AN¥ P4 = c(ANU=It y ANU=€Xt) which leads to the
results: AN¥=bd 0 ANVt = ¢ and  AN¥TPE N ANU-EXE = ¢ thereby
leading to the conclusion that: X = AN¥~int y fNu-ext y gNu-bd

(iii)  From (i), we have: AN¥=2d = (ANu-int y fNu-ext)

= c(ANEIY ) c(ANYTEXYY L. (1)

12



(iv)

(v)

(Vi)

We have: ANY=Xt = (c ANV = (AN (2)
[by proposition 2.3.4 (ii)]
By proposition 2.2.1 (iv):
AN = (cqYNu=ext = o((cAYNu=ely | (3) by (2)]
Hence, ANY 22 = c(ANU=) N c(ANY~E*) [from (1)]
= c{c((cAN* N} N c{c (AN} [using (2) and (3)]
= (cA)N* ¢t N AN¥ L since c(cA) = A.
Now, (ccA)NU=cl A ANu—cl = gNu=cl (¢ g)Nu-cl
= ANUCLN ¢ ((cA)NECLY
= ANU=CL\ AN¥=Int [y proposition 2.3.4 (iii)]
Hence, ANu~bd = gNu—cl\ gNu=int
We have, c(AN*22) = ¢(AN* =t N (ccA)NH)
= c(ANEDDY = ¢ (ANUCY Y ¢(cA)NECL)
= c(ANVP) = (cA)NUINt y ANV [py proposition 2.3.4 (ii) and (iii)]
Hence, ANY—Int  (cA)NU—int = o (A Nu-bd)
Let x € ANWInt
So,x € Abutx & cA
>x€Aandx € AV L butx ¢ cANV ¢
=>x € Aand (x € AV ! butx & cAN )
= x € Abut (x ¢ AV
=>x €A \ AV DA
Hence, AN%~nt € 4 \ AN¥DE,
Conversely, let x € A\ AV P4, Then x € A and x & AV*P4, 50 there
exist a N-OS 0, that contain x such that O, NcA =@ and x € 0, S A
which therefore shows that x € AN, Hence, A \ AVN¥ P4 € fNu-int,
Thus, we have: AN¥—Int = 4\ 4Nu-bd
We have AN4~¢ =n {¢€: € is N-CS with A S C}
Hence, (AN = ¢[n {C: € is N-CS with A S C}]
=U {cC: cC is N-OS with ¢C € cA}

= ANu—ext

Hence, C{C(quu—cl)} — C(CANu—ext) — cANu—int U quu—bd, by (“)
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ThUS, quu—cl =anu—intquNu—bd_

Proposition 2.4.2

If A and B are arbitrary subsets of a N-TS X then:
(i) @Nu-bd — g
(i) ANu=bd — (¢ g)Nu-bd

Proof:

(i) By proposition 2.4.1 (i), we have: AN¥ P4 = c(ANUInt y gNu-exty
wherein replacing A by @, we have: pN¥=bd = o(gNu-int y gNu-ext) =
c(@UX)=c(X)=0.

i)y We have: (ccA)V¥ P4 = (ccA)NH N {c(cA) PV = (cA)VH N

CANu—cl — tANu—cl N (Ca‘l)Nu_Cl — quu—bd.

Remark 2.4.1

In a N-TS X, the Nu-boundary of A S X is not necessarily N-CS and can be seen from
the following counter-example:

We may take X = {1,2,3,4,5} with T = {9, {2}, {4}, {1,2},{2,3}, {3,4}}, then (X, T) is a
N-TS. Let A = {1,3}, then cA = {2,4,5} and A%< = {1,3,4,5} N {1,2,3,5} = {1,3,5}
and (ccA)N¥4~¢t = Xand so AN¥ P4 = ANU=Cl 0 (ccA)NUCL = {1,3,5} which is not a
N-CS. However, in a GTS, the boundary of a subset of a GTS is a closed set which is not
true in the case of a subset of a N-TS. Because of this, the property that

(ANu-PayNu-bd ¢ gNu-bd does not hold in the case of N-TS.

Proposition 2.4.3
If A and B are arbitrary subsets of a N-TS X then the following are true:
(I) (quu—Cl N (Ccﬂ)) \ c,qNu—int C c,qNu—bd.
(”) (CANu—int)Nu—bd c cANu—bd
(III) (cﬂNu—cl)Nu—bd c c/qNu—bc‘l
(IV) (c/l N B)Nu—bd c cANu—bd U BNu—bd

(V) (c/l U B)Nu—bd c c/qNu—bd U BNu—bd

Proof:
(i) Let x € AN L N (cA) \ ANY-INE
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Then, x € ANt N (cA) and x ¢ ANU~E
= x € AVl and x € (cA) and x ¢ ANVt
=>x €AV landx € (cA) and x & A
= x € AV L and x € (cA)V¥ ¢
= x E c,qNu—Cl N (Cc/l)Nu_Cl
= x € AV* 724 and hence (AY* L N (cA)) \ ANV € ANU-DD
(i)  We have (ANu-int)Nu=bd = (gNu=intyNu—cl n [{C(quu—int)}Nu—cl]
= (ANVINu=cl 0 [ ((cA)NU=c)Nu=cl] [by proposition 2.3.4 (i)]
= (ANu-myNu=cl 0 (c.A)Nu=¢l [by proposition 2.3.3 (ii)]
c AN N (AN since AN € A
_ qNu-bd
Hence, (cﬂNu—int)Nu—bd c cﬂNu_bd.
(i) We have, (ANU-clyNu=bd — (gNu-clyNu—cl [ (g (qNu~cly)Nu~cl
= ANl 0 (c(AN%CH))Nu=cl [y proposition 2.3.3 (ii)]
Now, A € AN~ = ¢(ANY) € cA
= (c(ANumey)Nu=el ¢ (ccA)N¥=< [by proposition 2.3.3 (iii)]
Thus, (ANU-chyNu=bd — gNu=cl (¢ (ANU=cly)Nu=cl
C ANUCL () (cA)NUCL = gNu-bd
HenCE(c/lNu_d)Nu_bd c c/lNu_bd
(iv) By definition:
(A N BYVbd = (A \ BNl (c(A N B))Vec
C [ANE=C 4 BNE=Cl ( [(cA U ¢B)VE!]
C [ANu=el n BNU=Cl] ( [(cA)VECL U (¢B)VE]
= [ANU=CL  BVU=cl () (cA)NU=CL] Uy [ANE—CL n BNU=cl o (cB)Nu-cl]
= [ANUC () (cA)NUCL  BNU=CL] y [ANE—CL n BNU=cL o (cB)Nu-cl]
= [{AN=CL A (AN}  BNE=Cl] Y [ANE=CL  (BVU=CL ( (¢B)NU=cl)]
= [(A)Nubd  BVu—Cl] |y [ANEcl  BNu-bd]
C (A)Nu~bd y BNu-bd since (A)NuPd n BNu—cl ¢ (A)Nu~Pdand also,
ANu—cl  gNu=bd c (B)Nu-bd
Hence, (A N B)Nu-bd c gNu-bd j gNu-bd

(v) By definition:
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(cﬂ U B)Nu—bd — (Uq U B)Nu—cl N (C(Uq U B))Nu—cl

c [JlNu—cl U BNu—cl] N [(ch)Nu_Cl N (CB)Nu_Cl]

— [(c.;/l)Nu_Cl N (CB)Nu—cl] N [ANu—cl U BNu—cl]

— [(qu)Nu—cl N (CB)Nu—cl N quu—cl] U [(Cﬂ)Nu—cl N (CB)Nu_Cl
N BNu—cl]

— [{(Cc/l)Nu_Cl N ANu—cl} N (CB)Nu—cl] U [(qu)Nu—cl N {(CB)Nu—cl
N BNu—cl}]

— [quu—bd N (CB)Nu—cl] U [(qu)Nu—cl N BNu—bd]

c CANu—bd U BNu—bd1 since quu—bd N (CB)Nu—cl c quu—bd and

(CA)Nu—cl N BNu—bd c BNu—bd_

Hence, (A U B)Nu—bd ¢ gNu-bd (y gNu-bd,

Remark 2.4.2

That the equality does not hold in (i), (ii), (iii) of proposition 2.4.3, can be illustrated as

follows:

(i) For (i) let us consider X = {1,2,3,4} and T = {@,{1},{1,2},{2,3},{3,4}},

then (X, T) is a N-TS. Here the N-CS are: X, {2,3,4}, {3,4}, {1,4}, {1,2}.
Let A = {1,3}, then cA = {2,4}.
Then, ANt = (1}, AV¥=¢L = X and (ccA)N* ¢ = {2,3,4}
S0, ANUPd = gNu=cl 0 (cA)NU=Cl = X' n {2,3,4} = {2,3,4}.
Hence, (AN“ ¢ N (cA)) \ AV = X N {2,4}\ {1} = {2,4} € ANu-D4

(i) For the inequality in proposition 2.4.3 (ii), let us consider X = {1,2,3,4,5}
and T = {0, {1}, {3}, {5}, {1,3}, {2,4}, {3,5}}, then (X, T") is a N-TS. Here the
N-CS are: X,{2,3,4,5},{1,2,4,5},{1,2,3,4},{2,4,5},{1,3,5},{1,2,4}.
Let A = {3,4,5}, then ccA = {1,2}, AN~ = (3,5}, AN¥ ¢! = {2,3,4,5},
(ccA)NU=Cl = {1,2,4} and s0 AN*~P4 = (23,45} N {1,2,4} = {2,4}.
Also, (ANuintyNu—cl — (3,5}Vu-cl = (3,5}
And (c(ANY-intyyNu=cl — 1 2 gNu=cl — (1 2 43,
So, (ANu-intyNu-bd — ¢
Thus, @ = (ANU-mE)Nu=bd 5 gNu=bd = (9 43 and hence the result.
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(iii)

2.5

For the inequality in proposition 2.4.3 (iii), let us consider X = {1,2,3,4}
and T = {@,{1},{4},{1,2},{2,3},{3,4}}, then (X, T) is a N-TS. Here the N-
CSare: X,{2,3,4},{1,2,3},{3,4},{1,4},{1,2}.

Let A = {1,3}, then cA = {2,4}.

Now, AN¥~¢t = {1,2,3}, (ccA)V¥~¢ = {2,3,4}, and so AN¥ P2 = {2,3}.
Again, (ANe=cNu=cl = 112 3} and (c(ANYC))NE=cl = ({4})Nu—cl = {4}
and so, (ANw=eNu=bd — (gNu-clyNu=cl o (o(ANu=cly)Nu=cl — {12 3}
{4} = @. Thus, we have: @ = (ANUc)Nu=bd 5 gNu-bd — (3 33

Relative Topology of a Neutro-Topological Space

Definition 2.5.1

For a N-TS (X, 7) and A < X, we define the neutro-relative topology 7., for A to be
the collection given by: 7, = {B N A: B € T}. The N-TS (A, T4) is called a sub-space
of the N-TS (X, T) and the N-T 74 is said to be induced by T.

Proposition 2.5.1

Suppose (Y, Ty) is a sub-space of a N-TS (X, Tx), then the following results are true:

(i)
(i)

(iii)

(iv)

Proof:

(i)

A S YisN-CinY iffthereisaN-CS Cin X suchthat A =CnNY.

For every A € Y, AY* ™ = A nY, where AY*~is the Nu-closure
of A inX.

A subset P of Y will be a Ty-neutro-nhd of a pointy e Y iff P=0n7Y
for some T--neutro-nhd Q of y.

For every A € Y, AY*™ ¢ Jl@“‘i"t

LetAbeN-CinY

S cAISN-OINY

S cA=BNY,BisN-OinX
SA=c(BnNY)

& A = c(B) U c(Y), De-Morgan’s law
S A=c(B)un,sincec(yY) =0

S A=c(B)=Y\B

SA=YnNcB
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(i)

(iii)

(iv)

S A=YnC,whereC =cBisN-CinX.

By definition:

AG' = =n {D:DisN-CSinY and A € D}
=N{CNY:CisN-CSinX and A S C N Y}, by (i)
=N{CNY:CisN-CSinX and A C C}
=[Nn{C:CisN-CSinXandACSC}NTY
= AY* ¢t n Y, where AY“ is the Nu-closure of A in X.

Let us assume P to be a Jy-neutro-nhd of a pointy in Y. Then a J3-N-OS

set K will be there so that y € K < P.

Thus, for a 7,--N-OS 7 we have: y € X = J NnY < P. Now, if we assume

Q =P U/, then Q is a Jy-neutro-nhd of y since 7 is a T-N-OS such that

yeJeo.

Further, 9NY=(PUDNY=PnYPYuUInNnY=Pu(@ny)=2r,

sinceJNY < P.

Conversely, if P = 9 nY for some Ty -neutro-nhd Q of y. Then there exists

aJeTysothatye J < Q which meansye JnNnYy<c9ogny=P. And

since J N'Y € Ty, so Pis a Jy-neutro-nhd of the point y.

We have x € AU = x is a Ty-interior of A = A is a Ty-neutro-nhd of

x> ANYis aJy-neutro-nhd of x = ASCY=>x€ Jl@“‘i"t and hence

we must have A~ © AT
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