CHAPTER 3

Neutro-Bi-topological Spaces

In this chapter the notion of neutro-bi-topological space (N-B-TS) is defined and the aspects of interior, exterior, closure, and boundary are defined in neutro-bi-topological spaces (N-B-TS) and the various properties of these aspects that are generally true for GTS are inspected. Further, some new concepts of pseudo-exterior, quasi-open, quasi-closed sets, neutro-quasi-interior, neutro-quasi-closure are defined and some of their properties are analyzed with respect to the N-B-TS.

3.1 Introduction to Neutro-Bi-topological Space

Definition 3.1.1

Let \mathcal{T}_1 , \mathcal{T}_2 be two N-Ts on a universe \mathcal{X} , $[\mathcal{T}_1$ and \mathcal{T}_2 maybe same or different] then the triplet $(\mathcal{X}, \mathcal{T}_1, \mathcal{T}_2)$ becomes a neutro-bi-topological space (N-B-TS).

Remark 3.1.1

The subsets of \mathcal{X} that are included in the N-T \mathcal{T}_1 will be called N-O with respect to \mathcal{T}_1 and written as \mathcal{T}_1 -N-OS and those in the N-T \mathcal{T}_2 will be called N-O with respect to \mathcal{T}_2 and will be written as \mathcal{T}_2 -N-OS. In this chapter no union or intersection of the members of \mathcal{T}_1 and \mathcal{T}_2 will be considered and the subsets corresponding to the N-Ts will be studied separately. The N-CSs, which are the complements of the N-OSs will be identified separately with respect to the two N-Ts and written as \mathcal{T}_1 -N-CS or \mathcal{T}_2 -N-CS.

Proposition 3.1.1

For every N-B-TS $(X, \mathcal{T}_1, \mathcal{T}_2)$, $(X, \mathcal{T}_1 \cap \mathcal{T}_2)$ is a N-TS.

Proof: If \mathcal{T}_1 , \mathcal{T}_2 are N-Ts, then either $\emptyset \in \mathcal{T}_1$ or, $\mathcal{X} \in \mathcal{T}_1$ and either $\emptyset \in \mathcal{T}_2$ or, $\mathcal{X} \in \mathcal{T}_2$. In either case $\emptyset \in \mathcal{T}_1 \cap \mathcal{T}_2$ or, $\mathcal{X} \in \mathcal{T}_1 \cap \mathcal{T}_2$ and it satisfies the first condition for a N-T.

Some of the results discussed in this chapter are published in: Basumatary, B., Khaklary, J.K., & Said, B. (2022). On Neutro-Bitopological Spaces. *International Journal of Neutrosophic Science*, 18(2), 254-261.

Remark 3.1.2

If (X, T_1, T_2) is a *N-B-TS* then $(X, T_1 \cup T_2)$ may not be a *N-TS*. The reason for this being that if the empty set belong to one of the *N-T* and the whole universe belong to the other *NT*, then the union of the two *N-Ts* will include both the empty set and the whole set and this will not satisfy the first condition for a *N-T*.

Proposition 3.1.2

For every B-TS $(X, \mathcal{T}_1, \mathcal{T}_2)$, $(X, \mathcal{T}_1 \setminus \emptyset, \mathcal{T}_2 \setminus \emptyset)$ is a N-B-TS.

Proof: By *theorem 1.6.15*, it can be seen that if $(\mathcal{X}, \mathcal{T}_1)$ is a classical topology on \mathcal{X} then $(\mathcal{X}, \mathcal{T}_1 \setminus \emptyset)$ is a N-T on \mathcal{X} and similarly, if $(\mathcal{X}, \mathcal{T}_2)$ is a classical topology on \mathcal{X} then $(\mathcal{X}, \mathcal{T}_2 \setminus \emptyset)$ is a N-T on \mathcal{X} . Thus, since $\mathcal{T}_1 \setminus \emptyset$ and $\mathcal{T}_2 \setminus \emptyset$ are two N-Ts on \mathcal{X} , so by definition $(\mathcal{X}, \mathcal{T}_1 \setminus \emptyset, \mathcal{T}_2 \setminus \emptyset)$ will be a N-B-TS.

Proposition 3.1.3

For every B-TS $(X, \mathcal{T}_1, \mathcal{T}_2)$, $(X, \mathcal{T}_1 \setminus X, \mathcal{T}_2 \setminus X)$ is a N-B-TS.

Proof: By *theorem 1.6.16*, if (X, \mathcal{T}_1) is a classical topology on X then $(X, \mathcal{T}_1 \setminus X)$ is a N-T on X and similarly, if (X, \mathcal{T}_2) is a classical topology on X then $(X, \mathcal{T}_2 \setminus X)$ is a N-T on X. Thus, since $\mathcal{T}_1 \setminus X$ and $\mathcal{T}_2 \setminus X$ are two N-Ts on X, so $(X, \mathcal{T}_1 \setminus X, \mathcal{T}_2 \setminus X)$ will be a N-B-TS.

Proposition 3.1.4

For every BTS $(X, \mathcal{T}_1, \mathcal{T}_2)$, $(X, \mathcal{T}_1 \setminus \emptyset, \mathcal{T}_2 \setminus X)$ is a N-B-TS.

Proof: By *theorem 1.6.15*, if (X, \mathcal{T}_1) is a classical topology on X then $(X, \mathcal{T}_1 \setminus \emptyset)$ is a N-T on X and by *theorem 1.6.16*, if (X, \mathcal{T}_2) is a classical topology on X then $(X, \mathcal{T}_2 \setminus X)$ is a N-T on X. Thus, since $\mathcal{T}_1 \setminus \emptyset$ and $\mathcal{T}_2 \setminus X$ are two N-Ts on X, so $(X, \mathcal{T}_1 \setminus \emptyset, \mathcal{T}_2 \setminus X)$ will be a N-S-Ts.

Proposition 3.1.5

For every B-TS $(X, \mathcal{T}_1, \mathcal{T}_2)$, $(X, \mathcal{T}_1 \setminus X, \mathcal{T}_2 \setminus \emptyset)$ is a N-B-TS.

Proof: By *theorem 1.6.16*, if (X, \mathcal{T}_1) is a classical topology on X then $(X, \mathcal{T}_1 \setminus X)$ is a N-T on X and *theorem 1.6.15*, if (X, \mathcal{T}_2) is a classical topology on X then $(X, \mathcal{T}_2 \setminus \emptyset)$ is a N-T on X. Thus, since $\mathcal{T}_1 \setminus X$ and $\mathcal{T}_2 \setminus \emptyset$ are two N-Ts on X, so $(X, \mathcal{T}_1 \setminus X, \mathcal{T}_2 \setminus \emptyset)$ will be a N-B-TS.

3.2 Interior in Neutro-Bi-topological Spaces

Definition 3.2.1

Let $(X, \mathcal{T}_1, \mathcal{T}_2)$ be a N-B-TS and $\mathcal{A} \subseteq X$ then the Nu-Bi-interior of \mathcal{A} is denoted by $\mathcal{A}^{\mathcal{T}_{12}-Nint}$ and is defined as the Nu-interior with respect to \mathcal{T}_1 of the Nu-interior of \mathcal{A} with respect to \mathcal{T}_2 . That is: $\mathcal{A}^{\mathcal{T}_{12}-Nint} = (\mathcal{A}^{\mathcal{T}_2-Nint})^{\mathcal{T}_1-Nint}$, where $\mathcal{A}^{\mathcal{T}_2-Nint} = \cup \{\mathcal{O}_i : each \mathcal{O}_i \text{ is } \mathcal{T}_2-N-OS \text{ and } \mathcal{O}_i \subseteq \mathcal{A}\}$. Thus, $(\mathcal{A}^{\mathcal{T}_2-Nint})^{\mathcal{T}_1-Nint} = \cup \{\mathcal{O}_i : each \mathcal{O}_i \text{ is } \mathcal{T}_1-N-OS \text{ and } \mathcal{O}_i \subseteq \mathcal{A}^{\mathcal{T}_2-Nint}\}$.

Remark 3.2.1

The term Bi-interior has been used because we have taken the interior of the set two times with respect to the two *N-Ts* successively.

Definition 3.2.2

Let (X, T_1, T_2) be a N-B-TS and $A \subseteq X$. If A is a N-OS with respect to both T_1 and T_2 then we call such subsets as a T_{12} -N-OS.

Proposition 3.2.1

If $(X, \mathcal{T}_1, \mathcal{T}_2)$ is a N-B-TS and $\mathcal{A} \subseteq X$, and \mathcal{A} is \mathcal{T}_{12} -NOS then $\mathcal{A}^{\mathcal{T}_{12}-Nint} = \mathcal{A}$. **Proof**: By definition: $\mathcal{A}^{\mathcal{T}_{12}-Nint} = (\mathcal{A}^{\mathcal{T}_2-Nint})^{\mathcal{T}_1-Nint}$ $= (\mathcal{A})^{\mathcal{T}_1-Nint}, \text{ since } \mathcal{A} \text{ is } \mathcal{T}_2\text{-N-OS [by proposition 2.1.1]}$ $= \mathcal{A}, \text{ since } \mathcal{A} \text{ is } \mathcal{T}_1\text{-N-OS [by proposition 2.1.1]}$

Remark 3.2.2

The converse of *proposition 3.2.1* is not always true. That is, if $\mathcal{A}^{\mathcal{T}_{12}-int} = \mathcal{A}$ then \mathcal{A} may not be a \mathcal{T}_{12} -N-OS.

Consider $\mathcal{X} = \{1,2,3,4,5\}$ and let $\mathcal{T}_1 = \{\emptyset, \{1\}, \{3\}, \{2,3\}, \{1,3,4\}\}$, $\mathcal{T}_2 = \{\emptyset, \{3\}, \{4\}, \{1,2\}, \{2,4\}, \{2,3,4\}\}$ and $\mathcal{A} = \{1,2,3\}$.

Then $\mathcal{A}^{T_{12}-Nint} = (\mathcal{A}^{T_2-Nint})^{T_1-Nint} = (\{1,2,3\})^{T_1-Nint} = \{1,2,3\} = \mathcal{A}$, but \mathcal{A} is not T_{12} -NOS.

Remark 3.2.3

The counter example provided in *remark 3.2.2* also shows that the Nu-Bi-interior of \mathcal{A} is not the biggest *N-OS* contained in \mathcal{A} .

Proposition 3.2.2

For a N-B-TS (X, T_1, T_2) , if $A, B \subseteq X$, then the following results are true.

- (i) $\mathcal{A}^{T_{12}-Nint} \subseteq \mathcal{A}$
- (ii) $\emptyset^{T_{12}-Nint} = \emptyset; \mathcal{X}^{T_{12}-Nint} \subseteq \mathcal{X}$
- (iii) $\mathcal{A} \subseteq \mathcal{B} \Rightarrow \mathcal{A}^{\mathcal{T}_{12}-Nint} \subseteq \mathcal{B}^{\mathcal{T}_{12}-Nint}$
- $(iv) \qquad (\mathcal{A}^{T_{12}-Nint})^{T_{12}-Nint} \subseteq \mathcal{A}^{T_{12}-Nint}$
- $(v) \qquad (\mathcal{A} \cap \mathcal{B})^{\mathcal{T}_{12}-Nint} \subseteq \mathcal{A}^{\mathcal{T}_{12}-Nint} \cap \mathcal{B}^{\mathcal{T}_{12}-Nint}$
- $(vi) \qquad \left(\mathcal{A}^{T_{12}-Nint}\right) \cup \left(\mathcal{B}^{T_{12}-Nint}\right) \subseteq \left(\mathcal{A} \cup \mathcal{B}\right)^{T_{12}-Nint}$

Proof:

- (i) By definition the result is obvious.
- (ii) Since the null set is a subset of all sets, we have $\emptyset \subseteq \emptyset^{\mathcal{T}_{12}-Nint}$ and by (i) we have: $\emptyset^{\mathcal{T}_{12}-Nint} \subseteq \emptyset$ and thus, $\emptyset^{\mathcal{T}_{12}-Nint} = \emptyset$. By (i), $\mathcal{X}^{\mathcal{T}_{12}-Nint} \subseteq \mathcal{X}$.
- (iii) We have: $\mathcal{A}^{\mathcal{T}_{12}-Nint} = (\mathcal{A}^{\mathcal{T}_2-Nint})^{\mathcal{T}_1-Nint}$. Now, $\mathcal{A}^{\mathcal{T}_2-Nint} \subseteq \mathcal{B}^{\mathcal{T}_2-Nint}$ since $\mathcal{A} \subseteq \mathcal{B}$ by **proposition 2.1.2** (iv). Again since $\mathcal{A}^{\mathcal{T}_2-Nint} \subseteq \mathcal{B}^{\mathcal{T}_2-Nint}$, by **proposition 2.1.2** (iv): $(\mathcal{A}^{\mathcal{T}_2-Nint})^{\mathcal{T}_1-Nint} \subseteq (\mathcal{B}^{\mathcal{T}_2-Nint})^{\mathcal{T}_1-Nint}$ from which, we get: $\mathcal{A}^{\mathcal{T}_{12}-Nint} \subseteq \mathcal{B}^{\mathcal{T}_{12}-Nint}$
- (iv) We have: $\mathcal{A}^{\mathcal{T}_{12}-Nint} = \cup \{\mathcal{O}_i : \text{ each } \mathcal{O}_i \text{ is } \mathcal{T}_1\text{-NOS and } \mathcal{O}_i \subseteq \mathcal{A}^{\mathcal{T}_2-Nint}\} = \mathcal{B}$ and $\mathcal{B} \subseteq \mathcal{A}$ and by (iii), we have: $\mathcal{B}^{\mathcal{T}_{12}-Nint} \subseteq \mathcal{A}^{\mathcal{T}_{12}-Nint}$ which gives: $(\mathcal{A}^{\mathcal{T}_{12}-Nint})^{\mathcal{T}_{12}-Nint} \subseteq \mathcal{A}^{\mathcal{T}_{12}-Nint}$
- (v) We have: $(\mathcal{A} \cap \mathcal{B})^{\mathcal{T}_{12}-Nint} = ((\mathcal{A} \cap \mathcal{B})^{\mathcal{T}_2-Nint})^{\mathcal{T}_1-Nint}$ Now, $(\mathcal{A} \cap \mathcal{B})^{\mathcal{T}_2-Nint} \subseteq (\mathcal{A}^{\mathcal{T}_2-Nint}) \cap (\mathcal{B}^{\mathcal{T}_2-Nint})$, by **proposition 2.1.2** (v) and so by **proposition 2.1.2** (iv), we have: $[(\mathcal{A} \cap \mathcal{B})^{[\mathcal{T}_2-Nint]}]^{\mathcal{T}_1-Nint} \subseteq [(\mathcal{A}^{\mathcal{T}_2-Nint}) \cap (\mathcal{B}^{\mathcal{T}_2-Nint})]^{\mathcal{T}_1-Nint} \text{ and again,}$ by **proposition 2.1.2** (v), applied on the right side, we get: $[(\mathcal{A} \cap \mathcal{B})^{\mathcal{T}_2-Nint}]^{\mathcal{T}_1-Nint} \subseteq [(\mathcal{A}^{\mathcal{T}_2-Nint})]^{\mathcal{T}_1-Nint} \cap [(\mathcal{B}^{\mathcal{T}_2-Nint})]^{\mathcal{T}_1-Nint}$ Or, $(\mathcal{A} \cap \mathcal{B})^{\mathcal{T}_{12}-Nint} \subseteq (\mathcal{A}^{\mathcal{T}_{12}-Nint}) \cap (\mathcal{B}^{\mathcal{T}_{12}-Nint})$
- $(vi) \quad \text{Let } x \in \left(\mathcal{A}^{T_{12}-Nint}\right) \cup \left(\mathcal{B}^{T_{12}-Nint}\right)$ $\Rightarrow x \in \left(\mathcal{A}^{T_{12}-Nint}\right) \text{ or, } x \in \left(\mathcal{B}^{T_{12}-Nint}\right). \text{ This shows that there exists } N\text{-}OSs$ $\mathcal{O}_i \text{ and } \mathcal{O}_i \text{ such that: } x \in \{\cup \mathcal{O}_i\} \subseteq \mathcal{A}^{T_2-Nint} \text{ or, } x \in \{\cup \mathcal{O}_i\} \subseteq \mathcal{B}^{T_2-Nint}$

 $\Rightarrow x \in \mathcal{O}_i \cup \mathcal{O}_j \subseteq \mathcal{A}^{\mathcal{T}_2-Nint} \cup \mathcal{B}^{\mathcal{T}_2-Nint} \subseteq (\mathcal{A} \cup \mathcal{B})^{\mathcal{T}_2-Nint} , \text{ by } \textbf{proposition}$ $2.1.2 \ (\textbf{vi}). \text{ And similarly, } x \in (\mathcal{A}^{\mathcal{T}_1-Nint}) \cup (\mathcal{B}^{\mathcal{T}_1-Nint}) \subseteq (\mathcal{A} \cup \mathcal{B})^{\mathcal{T}_1-Nint}$ So $x \in (\mathcal{A} \cup \mathcal{B})^{\mathcal{T}_{12}-Nint} \Rightarrow (\mathcal{A}^{\mathcal{T}_{12}-Nint}) \cup (\mathcal{B}^{\mathcal{T}_{12}-Nint}) \subseteq (\mathcal{A} \cup \mathcal{B})^{\mathcal{T}_{12}-Nint}$

Remark 3.2.4

Equality will not hold in the case of *proposition 3.2.2 (iv)* and can be seen from the following example: Assume $\mathcal{X} = \{1,2,3,4,5\}$, $\mathcal{T}_1 = \{\emptyset,\{1\},\{3\},\{2,3\},\{3,4\},\{4,5\}\}$, $\mathcal{T}_2 = \{\emptyset,\{2\},\{3\},\{1,2\},\{3,4\},\{3,4,5\}\}$.

Let
$$\mathcal{A} = \{1,2\}$$
, then $\mathcal{A}^{\mathcal{T}_{12}-Nint} = (\mathcal{A}^{\mathcal{T}_2-Nint})^{\mathcal{T}_1-Nint} = (\{1,2\})^{\mathcal{T}_1-Nint} = \{1\}$ and $(\mathcal{A}^{\mathcal{T}_{12}-Nint})^{\mathcal{T}_{12}-Nint} = (\{1\})^{\mathcal{T}_{12}-Nint} = (\{1\})^{\mathcal{T}_2-Nint})^{\mathcal{T}_1-Nint} = \emptyset^{\mathcal{T}_1-Nint} = \emptyset$.

Thus, we have: $(\mathcal{A}^{\mathcal{T}_{12}-int})^{\mathcal{T}_{12}-Nint} \neq \mathcal{A}^{\mathcal{T}_{12}-Nint}$.

Equality will not hold in (v). Let us assume that $\mathcal{X} = \{1,2,3,4,5\}$, $\mathcal{T}_1 = \{\emptyset, \{1\}, \{3\}, \{1,2\}, \{2,3\}, 1,2,3\}, \{3,4,5\}$, $\mathcal{T}_2 = \{\emptyset, \{2\}, \{4\}, \{1,3\}, \{2,5\}, \{2,3,4\}, \{1,3,5\}\},$ $\mathcal{A} = \{1,2,3\}$, and $\mathcal{B} = \{2,3,4\}$, then $\mathcal{A} \cap \mathcal{B} = \{2,3\}$ and $\mathcal{A}^{\mathcal{T}_{12}-Nint} = \{1,2,3\},$ $\mathcal{B}^{\mathcal{T}_{12}-Nint} = \{2,3\}$ and $(\mathcal{A} \cap \mathcal{B})^{\mathcal{T}_{12}-Nint} = \emptyset$, but $(\mathcal{A}^{\mathcal{T}_{12}-Nint}) \cap (\mathcal{B}^{\mathcal{T}_{12}-Nint}) = \{2,3\}.$

Equality will not hold in (vi) and can be seen if we consider $\mathcal{A} = \{1,2\}$ and $\mathcal{B} = \{3,4\}$ in the above example.

We then get: $\mathcal{A}^{T_{12}-Nint} = \emptyset$, $\mathcal{B}^{T_{12}-Nint} = \emptyset$ and $(\mathcal{A} \cup \mathcal{B})^{T_{12}-Nint} = \{1,2,3\}$.

3.3 Closure in Neutro-Bi-topological Spaces

Definition 3.3.1

If $(\mathcal{X}, \mathcal{T}_1, \mathcal{T}_2)$ is a N-B-TS and $\mathcal{A} \subseteq \mathcal{X}$, then \mathcal{A} will be called \mathcal{T}_{12} -N-CS if the complement of \mathcal{A} , i.e. $c\mathcal{A}$ is \mathcal{T}_{12} -N-OS.

Definition 3.3.2

Let (X, T_1, T_2) be a N-B-TS and $A \subseteq X$ then the Nu-Bi-closure of A is denoted by $A^{T_{12}-Ncl}$ and is defined as the Nu-closure with respect to T_1 of the Nu-closure of A with respect to T_2 . That is: $A^{T_{12}-Ncl} = (A^{T_2-Ncl})^{T_1-Ncl}$, where $A^{T_2-Ncl} = \cap \{C_i : each C_i \text{ is } T_2-N-CS \text{ and } A \subseteq C_i\}$. Thus, $(A^{T_2-Ncl})^{T_1-Ncl} = \cap \{C_i : each C_i \text{ is } T_1-N-CS \text{ and } A^{T_2-Ncl} \subseteq C_i\}$. We define: $\emptyset^{T_{12}-Ncl} = \emptyset$.

Proposition 3.3.1

For a N-B-TS $(\mathcal{X}, \mathcal{T}_1, \mathcal{T}_2)$, if $\mathcal{A} \subseteq \mathcal{X}$ and if \mathcal{A} is \mathcal{T}_{12} -N-CS then $\mathcal{A}^{\mathcal{T}_{12}-Ncl} = \mathcal{A}$.

Proof: If \mathcal{A} is \mathcal{T}_{12} -NCS, then by **proposition 2.3.2**, we have:

$$\mathcal{A}^{\mathcal{T}_{12}-Ncl}=(\mathcal{A}^{\mathcal{T}_{2}-Ncl})^{\mathcal{T}_{1}-Ncl}=(\mathcal{A})^{\mathcal{T}_{1}-Ncl}=\mathcal{A}.$$

Remark 3.3.1

The converse of *proposition 3.3.1* is not true. That is, if $\mathcal{A}^{T_{12}-Ncl}=\mathcal{A}$, then it is not necessary that \mathcal{A} is \mathcal{T}_{12} -N-CS. The following example can be taken to illustrate it. Assume $\mathcal{X}=\{1,2,3,4\}$, $\mathcal{T}_1=\{\emptyset,\{1\},\{2\},\{3,4\},\{1,3,4\}\},\mathcal{T}_2=\{\emptyset,\{3\},\{4\},\{1,2\},\{2,4\}\}$ and $\mathcal{A}=\{1,2\}$, then $\mathcal{A}^{\mathcal{T}_{12}-Ncl}=\{1,2\}=\mathcal{A}$. But \mathcal{A} is not N-CS with respect to \mathcal{T}_2 and so is not \mathcal{T}_{12} -N-CS.

Proposition 3.3.2

If (X, T_1, T_2) is a N-BTS and $A, B \subseteq X$, then the results below are true:

- (i) $\mathcal{A} \subseteq \mathcal{A}^{T_{12}-Ncl}$
- (ii) $\mathcal{X}^{T_{12}-Ncl} = \mathcal{X}$
- (iii) $\mathcal{A} \subseteq \mathcal{B} \Rightarrow \mathcal{A}^{T_{12}-Ncl} \subseteq \mathcal{B}^{T_{12}-Ncl}$
- $(iv) \qquad (\mathcal{A} \cap \mathcal{B})^{\mathcal{T}_{12} Ncl} \subseteq (\mathcal{A}^{\mathcal{T}_{12} Ncl}) \cap (\mathcal{B}^{\mathcal{T}_{12} Ncl})$
- $(v) \qquad (\mathcal{A}^{T_{12}-Ncl}) \cup (\mathcal{B}^{T_{12}-Ncl}) \subseteq (\mathcal{A} \cup \mathcal{B})^{T_{12}-Ncl}$

Proof:

- (i) We have: $\mathcal{A}^{T_{12}-Ncl} = (\mathcal{A}^{T_2-Ncl})^{T_1-Ncl}$ Now, $\mathcal{A} \subseteq \mathcal{A}^{T_2-Ncl}$, [by **proposition 2.3.3** (i)] So, $\mathcal{A} \subseteq (\mathcal{A}^{T_2-Ncl})^{T_1-Ncl} = \mathcal{A}^{T_{12}-Ncl}$
- (ii) By (i), $\mathcal{X} \subseteq \mathcal{X}^{T_{12}-Ncl}$ and since \mathcal{X} is the universal set, we have: $\mathcal{X}^{T_{12}-Ncl} \subseteq \mathcal{X}$ and thus $\mathcal{X}^{T_{12}-Ncl} = \mathcal{X}$.
- (iii) Since $\mathcal{A} \subseteq \mathcal{B}$, by *proposition 2.3.3 (iii)* we have: $\mathcal{A}^{\mathcal{T}_2 Ncl} \subseteq \mathcal{B}^{\mathcal{T}_2 Ncl} \text{ and by the same proposition we again have:}$ $(\mathcal{A}^{\mathcal{T}_2 cl})^{\mathcal{T}_1 Ncl} \subseteq (\mathcal{B}^{\mathcal{T}_2 Ncl})^{\mathcal{T}_1 Ncl}$ Thus, $\mathcal{A}^{\mathcal{T}_{12} cl} \subseteq \mathcal{B}^{\mathcal{T}_{12} cl}$.
- (iv) We have: $(\mathcal{A} \cap \mathcal{B})^{T_{12}-Ncl} = ((\mathcal{A} \cap \mathcal{B})^{T_2-Ncl})^{T_1-Ncl}$ Now, $(\mathcal{A} \cap \mathcal{B})^{T_2-Ncl} \subseteq (\mathcal{A}^{T_2-Ncl}) \cap (\mathcal{B}^{T_2-Ncl})$ [by proposition 2.3.3 (v)] Thus, $[(\mathcal{A} \cap \mathcal{B})^{T_2-Ncl}]^{T_1-Ncl}$ $\subseteq [(\mathcal{A}^{T_2-Ncl}) \cap (\mathcal{B}^{T_2-Ncl})]^{T_1-Ncl}$, [by proposition 2.3.3 (iii)]

$$\subseteq (\mathcal{A}^{\mathcal{T}_2 - Ncl})^{\mathcal{T}_1 - Ncl} \cap (\mathcal{B}^{\mathcal{T}_2 - Ncl})^{\mathcal{T}_1 - Ncl}, \text{ [by } proposition 2.3.3 (v)]$$

Thus, $(\mathcal{A} \cap \mathcal{B})^{\mathcal{T}_{12} - Ncl} \subseteq (\mathcal{A}^{\mathcal{T}_{12} - cl}) \cap (\mathcal{B}^{\mathcal{T}_{12} - Ncl})$

(v) Since $\mathcal{A} \subseteq \mathcal{A} \cup \mathcal{B}$ and $\mathcal{B} \subseteq \mathcal{A} \cup \mathcal{B}$, so by (iii), we have: $\mathcal{A}^{T_{12}-Ncl} \subseteq (\mathcal{A} \cup \mathcal{B})^{T_{12}-Ncl} \text{ and } \mathcal{B}^{T_{12}-Ncl} \subseteq (\mathcal{A} \cup \mathcal{B})^{T_{12}-Ncl}.$ Thus, we have: $(\mathcal{A}^{T_{12}-Ncl}) \cup (\mathcal{B}^{T_{12}-Ncl}) \subseteq (\mathcal{A} \cup \mathcal{B})^{T_{12}-Ncl}$.

Remark 3.3.2

Equality will not always hold in *proposition 3.3.2 (iv)* and the following example shows it. Suppose that $\mathcal{X} = \{1,2,3,4,5\}$, $\mathcal{T}_1 = \{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{1,4\},\{2,3\},\{2,4\},\{3,4\}\}$ and $\mathcal{T}_2 = \{\emptyset,\{3\},\{4\},\{5\},\{1,3\},\{1,5\},\{2,5\},\{3,4\},\{4,5\}\}$. Suppose $\mathcal{A} = \{1,3,4\}$ and $\mathcal{B} = \{4,5\}$, then it can be seen that: $\mathcal{A}^{\mathcal{T}_{12}-Ncl} = \{1,2,4,5\}$ and $\mathcal{B}^{\mathcal{T}_{12}-Ncl} = \{2,4,5\}$ and as such, we have: $\mathcal{A}^{\mathcal{T}_{12}-Ncl} \cap \mathcal{B}^{\mathcal{T}_{12}-Ncl} = \{2,4,5\}$ Now, $\mathcal{A} \cap \mathcal{B} = \{4\}$ and $(\mathcal{A} \cap \mathcal{B})^{\mathcal{T}_{12}-Ncl} = \{4,5\}$

Proposition 3.3.3

For a NBTS $(X, \mathcal{T}_1, \mathcal{T}_2)$, if $\mathcal{A}, \mathcal{B} \subseteq X$, then the results that follow are true:

$$(i) c(\mathcal{A}^{T_{12}-Nint}) = (c\mathcal{A})^{T_{12}-Ncl}$$

(ii)
$$c(\mathcal{A}^{T_{12}-Ncl}) = (c\mathcal{A})^{T_{12}-Nint}$$

(iii)
$$(\mathcal{A} \setminus \mathcal{B})^{T_{12}-Nint} = (\mathcal{A}^{T_{12}-Nint}) \setminus (\mathcal{A}^{T_{12}-Ncl})$$

$$(iv) \qquad (\mathcal{A} \setminus \mathcal{B})^{\mathcal{T}_{12}-Ncl} = (\mathcal{A}^{\mathcal{T}_{12}-Ncl}) \setminus (\mathcal{A}^{\mathcal{T}_{12}-Nint})$$

Proof:

(i) By definition we have:

$$\mathcal{A}^{\mathcal{T}_{12}-Nint} = (\mathcal{A}^{\mathcal{T}_{2}-Nint})^{\mathcal{T}_{1}-Nint}$$

$$= c[\{c(\mathcal{A}^{\mathcal{T}_{2}-Nint})\}^{\mathcal{T}_{1}-Ncl}], \text{ [by proposition 2.3.4 (iii)]}$$

$$= c[((c\mathcal{A})^{\mathcal{T}_{2}-Ncl})^{\mathcal{T}_{1}-Ncl}], \text{ [by proposition, 2.3.4 (i)]}$$

$$= c[(c\mathcal{A})^{\mathcal{T}_{12}-cl}], \text{ [by proposition 2.3.3 (ii)]}$$
Hence, $c(\mathcal{A}^{\mathcal{T}_{12}-Nint}) = c[c\{(c\mathcal{A})^{\mathcal{T}_{12}-Ncl}\}]$

Thus,
$$c(\mathcal{A}^{T_{12}-Nint}) = (c\mathcal{A})^{T_{12}-Ncl}$$
, since $c[c\mathcal{A}] = \mathcal{A}$.

(ii) By definition we have:

$$(c\mathcal{A})^{T_{12}-Nint} = ((c\mathcal{A})^{T_2-Nint})^{T_1-Nint}$$

$$= c[\{c((c\mathcal{A})^{T_2-Nint})\}^{T_1-Ncl}], [by proposition 2.3.4 (iii)]$$

$$= c[\{c\{c((cc\mathcal{A})^{T_2-Ncl})\}\}^{T_1-Ncl}], [by proposition 2.3.4 (iii)]$$

=
$$c[(\mathcal{A}^{\mathcal{T}_2-Ncl})^{\mathcal{T}_1-Ncl}]$$
, since $c[c\mathcal{A}] = \mathcal{A}$.
= $c(\mathcal{A}^{\mathcal{T}_{12}-Ncl})$, [by **proposition 2.3.3** (ii)]

(iii) By definition we have:

$$(\mathcal{A} \setminus \mathcal{B})^{T_{12}-Nint} = ((\mathcal{A} \setminus \mathcal{B})^{T_2-Nint})^{T_1-Nint}$$

$$= [(\mathcal{A}^{T_2-Nint}) \setminus (\mathcal{B}^{T_2-Ncl})]^{T_1-Nint}, [proposition 2.3.4 (v)]$$

$$= ((\mathcal{A}^{T_2-Nint})^{T_1-int}) \setminus ((\mathcal{B}^{T_2-Ncl}))^{T_1-Ncl},$$

$$[proposition 2.3.4 (v)]$$

$$= (\mathcal{A}^{T_{12}-Nint}) \setminus (\mathcal{B}^{T_{12}-Ncl}).$$

(iv) By definition we have:

$$(\mathcal{A} \setminus \mathcal{B})^{T_{12}-Ncl} = ((\mathcal{A} \setminus \mathcal{B})^{T_2-Ncl})^{T_1-Ncl}$$

$$= \mathcal{T}_1 \text{-}cl((\mathcal{A}^{T_2-Ncl}) \setminus (\mathcal{B}^{T_2-Nint})), [\textbf{proposition 2.3.4 (vi)}]$$

$$= ((\mathcal{A}^{T_2-Ncl})^{T_1-Ncl}) \setminus ((\mathcal{B}^{T_2-Nint})^{T_1-Nint}),$$

$$[\textbf{proposition 2.3.4 (vi)}]$$

$$= (\mathcal{A}^{T_{12}-Ncl}) \setminus (\mathcal{A}^{T_{12}-Nint}).$$

Corollary 3.3.1

- (i) $\mathcal{A}^{T_{12}-Nint} = c[(c\mathcal{A})^{T_{12}-Ncl}]$
- (i) $\mathcal{A}^{T_{12}-Ncl} = c[(c\mathcal{A})^{T_{12}-Nint}]$

Proof:

- (i) From (i) of **proposition 3.3.3**, we have: $c(\mathcal{A}^{T_{12}-Nint}) = (c\mathcal{A})^{T_{12}-Ncl}$. Taking complements on both sides, we get: $c[c(\mathcal{A}^{T_{12}-Nint})] = c[(c\mathcal{A})^{T_{12}-Ncl}] \text{ from which we get:}$ $\mathcal{A}^{T_{12}-Nint} = c[(c\mathcal{A})^{T_{12}-Ncl}]$
- (ii) Taking complements of both sides of (ii) of **proposition 3.3.3**, we get: $c[c(\mathcal{A}^{T_{12}-Ncl})] = c[(c\mathcal{A})^{T_{12}-Nint}], \text{ or, } \mathcal{A}^{T_{12}-Ncl} = c[(c\mathcal{A})^{T_{12}-Nint}].$

3.4 Exterior in Neutro-Bi-topological Spaces

Definition 3.4.1

If (X, T_1, T_2) is a N-B-TS and $A \subseteq X$ then the Nu-Bi-exterior of A is denoted by $A^{T_{12}-Next}$ and is defined as the Nu-exterior with respect to T_1 of the Nu-exterior of A with respect to T_2 .

That is: $\mathcal{A}^{\mathcal{T}_{12}-Next} = (\mathcal{A}^{\mathcal{T}_2-Next})^{\mathcal{T}_1-Next}$, where $\mathcal{A}^{\mathcal{T}_2-Next} = \bigcup \{\mathcal{O}_i : each \ \mathcal{O}_i \text{ is } \mathcal{T}_2-N-OS \text{ and } \mathcal{O}_i \subseteq c\mathcal{A}\}.$

Thus,
$$(\mathcal{A}^{T_2-Next})^{T_1-Next} = \cup \{\mathcal{O}_i : each \ \mathcal{O}_i \text{ is } T_1-N-OS \text{ and } \mathcal{O}_i \subseteq \mathcal{C}(\mathcal{A}^{T_2-Next})\}.$$

Remark 3.4.1

From the following discussion, it may be observed that in a *N-B-TS*, a direct relation cannot be formed between $\mathcal{A}^{T_{12}-Next}$ and $\mathcal{A}^{T_{12}-Nint}$ and also a direct relation between $\mathcal{A}^{T_{12}-Next}$ and $\mathcal{A}^{T_{12}-Next}$ and $\mathcal{A}^{T_{12}-Next}$ and between $\mathcal{A}^{T_{12}-Next}$ and $\mathcal{A}^{T_{12}-Next}$.

By definition, we have:

$$\mathcal{A}^{T_{12}-Next} = (\mathcal{A}^{T_2-Next})^{T_1-Next}$$

$$= ((c\mathcal{A})^{T_2-Nint})^{T_1-Next}, [by \text{ proposition 2.2.1 (ii)}]$$

$$= [c((c\mathcal{A})^{T_2-Nint})]^{T_1-Nint}, [by \text{ proposition 2.2.1 (ii)}]$$

This shows that there is no direct relation between $\mathcal{A}^{T_{12}-Next}$ and $\mathcal{A}^{T_{12}-Nint}$.

We may also have:

$$(c\mathcal{A})^{T_{12}-Next} = ((c\mathcal{A})^{T_2-Next})^{T_1-Next}$$

$$= (\mathcal{A}^{T_2-Nint})^{T_1-Nxt}, \text{ using } (c\mathcal{A})^{T_2-Next} = \{c(c\mathcal{A})\}^{T_2-Nint}$$

$$= [c(\mathcal{A}^{T_2-Nint})]^{T_1-Nint}, \text{ using } \mathcal{A}^{T_1-ext} = (c\mathcal{A})^{T_1-int}$$

Moreover, $\mathcal{A}^{\mathcal{I}_{12}-Nint}$ and $\mathcal{A}^{\mathcal{I}_{12}-Ncl}$ can be related by the relations established in *proposition 3.3.3* and the *corollary 3.3.1*.

The pseudo relation between $\mathcal{A}^{T_{12}-Next}$ and $\mathcal{A}^{T_{12}-Nint}$ obtained above is:

$$\mathcal{A}^{T_{12}-Next} = [c((c\mathcal{A})^{T_2-Nint})]^{T_1-Nint}$$

$$= (\mathcal{A}^{T_2-Ncl})^{T_1-Nint}, \text{ [by proposition 2.3.4 (iv)]}$$

$$= c[\{c(\mathcal{A}^{T_2-Ncl})\}^{T_1-Ncl}], \text{ [by proposition 2.3.4 (iii)]}$$

Thus, $\mathcal{A}^{T_{12}-Next} = c[\{c(\mathcal{A}^{T_2-Ncl})\}^{T_1-Ncl}]$, which can be treated as a pseudo relation between the two aspects.

Definition 3.4.2

Let $(\mathcal{X}, \mathcal{T}_1, \mathcal{T}_2)$ be a N-B-TS and $\mathcal{A} \subseteq \mathcal{X}$, then the Nu-pseudo-exterior of \mathcal{A} denoted by $\mathcal{A}^{\mathcal{T}_{12}^p-Next}$ and is defined as $\mathcal{A}^{\mathcal{T}_{12}^p-Next} = (c\mathcal{A})^{\mathcal{T}_{12}-Nint} = ((c\mathcal{A})^{\mathcal{T}_2-Nint})^{\mathcal{T}_1-Nint}$.

Proposition 3.4.1

For a NBTS $(X, \mathcal{T}_1, \mathcal{T}_2)$ if $A, B \subseteq X$, then the results that follows hold:

(i)
$$\mathcal{A}^{\mathcal{T}_{12}^p-Next} \subseteq c\mathcal{A}$$

(ii)
$$\mathcal{A}^{\mathcal{T}_{12}^p-Next} = c\mathcal{A}$$
, if \mathcal{A} is \mathcal{T}_{12} -N-CS.

(iii)
$$\mathcal{A}^{\mathcal{T}_{12}^p-Next} \cap \mathcal{A}^{\mathcal{T}_{12}-Nint} = \emptyset.$$

(iv)
$$\mathcal{A}^{T_{12}-Nint} = (c\mathcal{A})^{T_{12}^p-Next}$$

$$(v) \qquad \left[c(\mathcal{A}^{T_{12}^p-Next})\right]^{T_{12}^p-Next} \subseteq \mathcal{A}^{T_{12}^p-Next}$$

(vi) If
$$\mathcal{A} \subseteq \mathcal{B}$$
, then $\mathcal{B}^{\mathcal{T}^p_{12}-Next} \subseteq \mathcal{A}^{\mathcal{T}^p_{12}-Next}$

(vii)
$$\mathcal{A}^{T_{12}-Nint} \subseteq (\mathcal{A}^{T_{12}^p-Next})^{T_{12}^p-Next}$$

$$(viii) \quad (\mathcal{A} \cup \mathcal{B})^{\mathcal{T}^p_{12} - Next} \subseteq \left(\mathcal{A}^{\mathcal{T}^p_{12} - Next}\right) \cap \left(\mathcal{A}^{\mathcal{T}^p_{12} - Next}\right)$$

$$(ix) \qquad \left(\mathcal{A}^{\mathcal{T}^p_{12}-Next}\right) \cup \left(\mathcal{B}^{\mathcal{T}^p_{12}-Next}\right) \subseteq (\mathcal{A} \cap \mathcal{B})^{\mathcal{T}^p_{12}-Next}$$

Proof:

(i) We have:
$$\mathcal{A}^{\mathcal{T}^p_{12}-Next} = (c\mathcal{A})^{\mathcal{T}_{12}-Nint} \subseteq c\mathcal{A}$$
, [by **proposition 3.2.2** (i)]

(ii) If
$$\mathcal{A}$$
 is \mathcal{T}_{12} -N-CS, then $c\mathcal{A}$ is \mathcal{T}_{12} -N-OS.
Thus, $\mathcal{A}^{\mathcal{T}_{12}^p-Next}=(c\mathcal{A})^{\mathcal{T}_{12}-Nint}=c\mathcal{A}$, [by **proposition 3.2.1**]

(iii) Let
$$x \in \mathcal{A}^{\mathcal{T}^p_{12}-Next} \cap \mathcal{A}^{\mathcal{T}_{12}-Nint}$$

 $\Rightarrow x \in \mathcal{A}^{\mathcal{T}^p_{12}-Next}$ and $x \in \mathcal{A}^{\mathcal{T}_{12}-Nint}$
 $\Rightarrow x \in ((c\mathcal{A})^{\mathcal{T}_2-Nint})^{\mathcal{T}_1-Nint}$ and $x \in (\mathcal{A}^{\mathcal{T}_2-Nint})^{\mathcal{T}_1-Nint}$
 $\Rightarrow x \in c\mathcal{A}$ and $x \in \mathcal{A}$ which is not possible and so we must have:
 $\mathcal{A}^{\mathcal{T}^p_{12}-Next} \cap \mathcal{A}^{\mathcal{T}_{12}-Nint} = \emptyset$.

(iv) We have:
$$(cA)^{T_{12}^p-Next} = (c(cA))^{T_{12}-Nint}$$

= $A^{T_{12}-Nint}$, since $c(cA) = A$

(v) We have:

$$\begin{split} \left[c\left(\mathcal{A}^{\mathcal{T}^p_{12}-Next}\right)\right]^{\mathcal{T}^p_{12}-Next} &= \left[c((c\mathcal{A})^{\mathcal{T}_{12}-Nint})\right]^{\mathcal{T}^p_{12}-Next} \\ &= \left[c\left\{c\left((c\mathcal{A})^{\mathcal{T}_{12}-Nint}\right)\right\}\right]^{\mathcal{T}_{12}-Nint} \\ &= \left[(c\mathcal{A})^{\mathcal{T}_{12}-Nint}\right]^{\mathcal{T}_{12}-Nint} \\ &\subseteq (c\mathcal{A})^{\mathcal{T}_{12}-Nint} \text{ [by proposition 3.2.2 (iv)]} \\ &= \left(\mathcal{A}^{\mathcal{T}^p_{12}-Next}\right), \text{ [by definition]} \end{split}$$

Hence, $[c(\mathcal{A}^{T_{12}^p-Next})]^{T_{12}^p-Next} \subseteq \mathcal{A}^{T_{12}^p-Next}$

(vi) We have: $\mathcal{A} \subseteq \mathcal{B} \Rightarrow c\mathcal{B} \subseteq c\mathcal{A}$, and by **proposition 3.2.2** (iii) we get:

$$(c\mathcal{B})^{T_{12}-Nint} \subseteq (c\mathcal{A})^{T_{12}-Nint}$$
$$\Rightarrow \mathcal{B}^{T_{12}^p-Next} \subseteq \mathcal{A}^{T_{12}^p-Next}.$$

$$\begin{aligned} (vii) \quad & \text{We have by } (i), \ \mathcal{A}^{\mathcal{T}^p_{12}-Next} \subseteq c\mathcal{A} \\ \\ & \Rightarrow \mathcal{A} \subseteq c \left(\mathcal{A}^{\mathcal{T}^p_{12}-Next} \right) \\ \\ & \Rightarrow \mathcal{A}^{\mathcal{T}_{12}-Nint} \subseteq \{ c \left(\mathcal{A}^{\mathcal{T}^p_{12}-Next} \right) \}^{\mathcal{T}_{12}-Nint} \\ \\ & = \left(\mathcal{A}^{\mathcal{T}^p_{12}-Nxt} \right)^{\mathcal{T}^p_{12}-Next} \end{aligned}$$

Hence, $\mathcal{A}^{T_{12}-Nint} \subseteq (\mathcal{A}^{T_{12}^p-Next})^{T_{12}^p-Next}$

(viii) We have:
$$(\mathcal{A} \cup \mathcal{B})^{\mathcal{T}_{12}^p - Next} = \{c(\mathcal{A} \cup \mathcal{B})\}^{\mathcal{T}_{12} - Nint}$$

 $= (c\mathcal{A} \cap c\mathcal{B})^{\mathcal{T}_{12} - Nint}$
 $\subseteq (c\mathcal{A})^{\mathcal{T}_{12} - Nint} \cap (c\mathcal{B})^{\mathcal{T}_{12} - Nint},$

Hence,
$$(\mathcal{A} \cup \mathcal{B})^{T_{12}^p - Next} \subseteq (\mathcal{A}^{T_{12}^p - Next}) \cap (\mathcal{A}^{T_{12}^p - Next})$$

[by *proposition 3.2.2 (v)*]

(ix) We have:
$$\left(\mathcal{A}^{\mathcal{T}^p_{12}-Next}\right) \cup \left(\mathcal{B}^{\mathcal{T}^p_{12}-Next}\right)$$

$$= (c\mathcal{A})^{\mathcal{T}_{12}-Nint} \cup (c\mathcal{B})^{\mathcal{T}_{12}-Nint}$$

$$\subseteq (c\mathcal{A} \cup c\mathcal{B})^{\mathcal{T}_{12}-Nint}, \text{ [by proposition 3.2.2 (vi)]}$$

$$= (c\{\mathcal{A} \cap \mathcal{B}\})^{\mathcal{T}_{12}-Nint} = (\mathcal{A} \cap \mathcal{B})^{\mathcal{T}^p_{12}-Next}$$
Hence, $\left(\mathcal{A}^{\mathcal{T}^p_{12}-Next}\right) \cup \left(\mathcal{B}^{\mathcal{T}^p_{12}-Next}\right) \subseteq (\mathcal{A} \cap \mathcal{B})^{\mathcal{T}^p_{12}-Next}$

3.5 Boundary in Neutro-Bi-topological Spaces

Definition 3.5.1

Let (X, T_1, T_2) be a N-B-TS and $A \subseteq X$ then the Nu-Bi-boundary of A is denoted by $A^{T_{12}-bd}$ and is defined as the intersection of the Nu-Bi-closure of the set A and the Nu-Bi-closure of the complement of A. Thus, $A^{T_{12}-Nbd} = A^{T_{12}-Ncl} \cap (cA)^{T_{12}-Ncl}$.

Proposition 3.5.1

For a N-B-TS (X, T_1, T_2) , if $A \subseteq X$, then we have the following results:

(i)
$$\mathcal{A}^{T_{12}-Nbd} = (c\mathcal{A})^{T_{12}-Nbd}$$

(ii)
$$\mathcal{A}^{T_{12}-Ncl} \setminus \mathcal{A}^{T_{12}-Nint} = \mathcal{A}^{T_{12}-Nbd}$$

$$(iii) \quad \left(\mathcal{A}^{T_{12}-Nint}\right) \cup \left((c\mathcal{A})^{T_{12}-Nint}\right) = c(\mathcal{A}^{T_{12}-Nbd})$$

(iv)
$$\mathcal{A} \setminus \mathcal{A}^{T_{12}-Nbd} = \mathcal{A}^{T_{12}-Nint}$$

$$(v) \qquad \mathcal{A}^{\mathcal{T}_{12}-Ncl} = \left(\mathcal{A}^{\mathcal{T}_{12}-Nint}\right) \cup \left(\mathcal{A}^{\mathcal{T}_{12}-Nbd}\right)$$

Proof:

(i) We have by definition:

$$(c\mathcal{A})^{T_{12}-Nbd} = (c\mathcal{A})^{T_{12}-Ncl} \cap (c\{c\mathcal{A}\})^{T_{12}-Ncl}$$

$$= (c\mathcal{A})^{T_{12}-Ncl} \cap \mathcal{A}^{T_{12}-Ncl}$$

$$= \mathcal{A}^{T_{12}-Ncl} \cap (c\mathcal{A})^{T_{12}-Ncl}$$

$$= \mathcal{A}^{T_{12}-Nbd}$$

(ii) Let
$$x \in \mathcal{A}^{T_{12}-Ncl} \setminus \mathcal{A}^{T_{12}-Nint}$$

 $\Rightarrow x \in \mathcal{A}^{T_{12}-Ncl}$ and $x \notin \mathcal{A}^{T_{12}-Nint}$
 $\Rightarrow x \in \mathcal{A}^{T_{12}-Ncl}$ and $x \notin \mathcal{A}$
 $\Rightarrow x \in \mathcal{A}^{T_{12}-Ncl}$ and $x \in c\mathcal{A}$

$$\Rightarrow x \in \mathcal{A}^{T_{12}-Ncl}$$
 and $x \in (c\mathcal{A})^{T_{12}-Ncl}$

$$\Rightarrow x \in \mathcal{A}^{T_{12}-Ncl} \cap (c\mathcal{A})^{T_{12}-Ncl}$$

$$\Rightarrow x \in \mathcal{A}^{T_{12}-Nbd}$$

Hence,
$$\mathcal{A}^{T_{12}-Ncl}\setminus\mathcal{A}^{T_{12}-Nint}\subseteq\mathcal{A}^{T_{12}-Nbd}$$

Conversely, let $x \in \mathcal{A}^{T_{12}-Nbd}$

Then,
$$x \in \mathcal{A}^{T_{12}-Ncl} \cap (c\mathcal{A})^{T_{12}-Ncl}$$

$$\Rightarrow x \in \mathcal{A}^{T_{12}-Ncl}$$
 and $x \in (c\mathcal{A})^{T_{12}-Ncl}$

$$\Rightarrow x \in \mathcal{A}^{T_{12}-Ncl}$$
 and $x \in c(\mathcal{A}^{T_{12}-Nint})$, [by *proposition 3.3.3 (i)*]

$$\Rightarrow x \in \mathcal{A}^{T_{12}-Ncl}$$
 and $x \notin \mathcal{A}^{T_{12}-Nint}$

$$\Rightarrow x \in \mathcal{A}^{T_{12}-Ncl} \setminus \mathcal{A}^{T_{12}-Nint}$$

Hence,
$$\mathcal{A}^{\mathcal{T}_{12}-Nbd} \subseteq \mathcal{A}^{\mathcal{T}_{12}-Ncl} \setminus \mathcal{A}^{\mathcal{T}_{12}-Nint}$$

Thus,
$$\mathcal{A}^{T_{12}-Ncl}\setminus\mathcal{A}^{T_{12}-Nint}=\mathcal{A}^{T_{12}-Nbd}$$

(iii) We have:
$$c[\mathcal{A}^{T_{12}-Nbd}] = c[\mathcal{A}^{T_{12}-Ncl} \cap (c\mathcal{A})^{T_{12}-Ncl}]$$

$$= c[\mathcal{A}^{T_{12}-Ncl}] \cup c[(c\mathcal{A})^{T_{12}-Ncl}]$$

$$= [(c\mathcal{A})^{T_{12}-Nint}] \cup (\mathcal{A}^{T_{12}-Nint}),$$
[by proposition 3.3.3 (ii) and corollary 3.3.1 (i)]

Thus,
$$c[\mathcal{A}^{T_{12}-Nbd}] = [(c\mathcal{A})^{T_{12}-Nint}] \cup (\mathcal{A}^{T_{12}-Nint})$$

(iv) For every $x \in \mathcal{A} \setminus \mathcal{A}^{T_{12}-Nbd}$

We have $x \in \mathcal{A}$ but $x \notin \mathcal{A}^{T_{12}-Nbd}$

Or,
$$x \in \mathcal{A}$$
 but $x \notin [\mathcal{A}^{T_{12}-Ncl} \cap (c\mathcal{A})^{T_{12}-Ncl}]$

Or,
$$x \in \mathcal{A}$$
 but $[x \notin \mathcal{A}^{T_{12}-Ncl}$ but $x \notin (c\mathcal{A})^{T_{12}-Ncl}]$

Or,
$$x \in \mathcal{A}$$
 but $x \notin \mathcal{A}^{\mathcal{T}_{12}-Ncl}$ but $x \notin c(\mathcal{A}^{\mathcal{T}_{12}-Nint})$, by proposition 3.3.3 (i).

Or,
$$x \in \mathcal{A}$$
 but $x \notin \mathcal{A}^{\mathcal{I}_{12}-Ncl}$ but $x \in (\mathcal{A}^{\mathcal{I}_{12}-Nint})$

$$\Rightarrow x \in \mathcal{A}^{T_{12}-Nint}$$
 and hence $\mathcal{A} \setminus \mathcal{A}^{T_{12}-Nbd} \subseteq \mathcal{A}^{T_{12}-Nint}$

Conversely, let $x \in \mathcal{A}^{T_{12}-Nint}$

$$\Rightarrow x \in \mathcal{A} \Rightarrow x \in \mathcal{A} \text{ but } x \notin c\mathcal{A}$$

$$\Rightarrow x \in \mathcal{A} \text{ but, } [x \in \mathcal{A}^{T_{12}-Ncl} \text{ and } x \notin (c\mathcal{A})^{T_{12}-Ncl}], \text{ since } \mathcal{A} \subseteq \mathcal{A}^{T_{12}-Ncl}$$

$$\Rightarrow x \in \mathcal{A} \text{ but } x \notin [\mathcal{A}^{T_{12}-Ncl} \cap (c\mathcal{A})^{T_{12}-Ncl}]$$

$$\Rightarrow x \in \mathcal{A} \text{ but } x \notin \mathcal{A}^{T_{12}-Nbd}$$

$$\Rightarrow x \in \mathcal{A} \setminus \mathcal{A}^{T_{12}-Nbd}$$

Hence,
$$\mathcal{A}^{\mathcal{T}_{12}-Nint} \subseteq \mathcal{A} \setminus \mathcal{A}^{\mathcal{T}_{12}-Nbd}$$

Thus,
$$\mathcal{A} \setminus \mathcal{A}^{T_{12}-Nbd} = \mathcal{A}^{T_{12}-Nint}$$

(v) Let
$$x \in [\mathcal{A}^{T_{12}-Nint}] \cup [\mathcal{A}^{T_{12}-Nbd}]$$

Then,
$$x \in [\mathcal{A}^{T_{12}-Nint}]$$
 or, $x \in [\mathcal{A}^{T_{12}-Nbd}]$

If we consider the first option, then $x \in [\mathcal{A}^{T_{12}-Nint}] \subseteq \mathcal{A} \subseteq \mathcal{A}^{T_{12}-Ncl}$

Hence,
$$[\mathcal{A}^{T_{12}-Nint}] \cup [\mathcal{A}^{T_{12}-Nbd}] \subseteq \mathcal{A}^{T_{12}-Ncl}$$

If we consider the second option, then $x \in [\mathcal{A}^{T_{12}-Ncl} \cap (c\mathcal{A})^{T_{12}-Ncl}]$ which gives us: $x \in \mathcal{A}^{T_{12}-Ncl}$ and $x \in (c\mathcal{A})^{T_{12}-Ncl}$

Thus, in either case:

$$[\mathcal{A}^{\mathcal{T}_{12}-Nint}] \cup [\mathcal{A}^{\mathcal{T}_{12}-Nbd}] \subseteq \mathcal{A}^{\mathcal{T}_{12}-Ncl}.$$

Conversely, let $x \in \mathcal{A}^{T_{12}-Ncl}$

Then,
$$x \in (\mathcal{A}^{T_2-Ncl})^{T_1-Ncl}$$

$$\Rightarrow x \in \mathcal{A}^{\mathcal{T}_1 - Ncl}$$
 and $x \in \mathcal{A}^{\mathcal{T}_2 - Ncl}$

Now,
$$x \in \mathcal{A}^{T_1-Ncl} \Rightarrow x \in [\mathcal{A}^{T_1-Nint} \cup \mathcal{A}^{T_1-Nbd}]$$
, [proposition 2.4.1 (vi)]

And,
$$x \in \mathcal{A}^{T_2-Ncl} \Rightarrow x \in [\mathcal{A}^{T_2-Nint} \cup \mathcal{A}^{T_2-Nbd}]$$

Hence,
$$x \in [\mathcal{A}^{\mathcal{T}_{12}-Nint} \cup \mathcal{A}^{\mathcal{T}_{12}-Nbd}]$$

Hence,
$$\mathcal{A}^{\mathcal{T}_{12}-Ncl} \subseteq [\mathcal{A}^{\mathcal{T}_{12}-Nint} \cup \mathcal{A}^{\mathcal{T}_{12}-Nbd}]$$

Thus,
$$\mathcal{A}^{\mathcal{T}_{12}-Ncl} = [\mathcal{A}^{\mathcal{T}_{12}-Nint} \cup \mathcal{A}^{\mathcal{T}_{12}-Nbd}]$$

3.6 Neutro-Quasi Open and Closed Sets

Definition 3.6.1

Let (X, T_1, T_2) be a N-B-TS and $A \subseteq X$, then the subset A will be called Nu-Quasi-Open, written as N-QO, if for each $x \in A$, there exists a N-OS Q, N-O with respect to either T_1 or T_2 , so that $x \in Q \subseteq A$.

A set is Nu-Quasi-Closed, written as N-QC if its complement is N-QO.

Remark 3.6.1

Every *N-OS* is *N-QO* but converse may not be always true. Same holds for *N-QC* sets.

Definition 3.6.2

Let (X, T_1, T_2) be a N-B-TS and $A \subseteq X$, then the Nu-quasi-interior of A, denoted by A^{NQ-int} , is the union of all N-QO sets which are subsets of A.

Thus, $\mathcal{A}^{NQ-int} = \bigcup \{\mathcal{O}_i : each \ \mathcal{O}_i \text{ is NQO and each } \mathcal{O}_i \subseteq \mathcal{A}\}.$

Proposition 3.6.1

Let (X, T_1, T_2) be a N-B-TS and $A, B \subseteq X$. Let A, B be N-QO sets, then $A \cup B$ and $A \cap B$ are also N-QO sets.

Proposition 3.6.2

If (X, T_1, T_2) is a NBTS and $A, B \subseteq X$, then the results that follow are true:

- (i) $\mathcal{A}^{NQ-int} \subseteq \mathcal{A}$
- (ii) $\mathcal{A}^{NQ-int} = \mathcal{A}$, if \mathcal{A} is N-QO.
- (iii) $\mathcal{A}^{T_{12}-Nint} \subseteq \mathcal{A}^{NQ-int}$
- $(iv) \qquad \mathcal{A} \subseteq \mathcal{B} \Rightarrow \mathcal{A}^{NQ-int} \subseteq \mathcal{B}^{NQ-int}$
- $(v) \qquad (\mathcal{A} \cap \mathcal{B})^{NQ-int} = (\mathcal{A}^{NQ-int}) \cap (\mathcal{B}^{NQ-int})$
- $(vi) \qquad (\mathcal{A}^{NQ-int}) \cup \left(\mathcal{B}^{NQ-int}\right) \subseteq (\mathcal{A} \cup \mathcal{B})^{NQ-int}$

Proof:

- (i) We have $\mathcal{A}^{NQ-int} \subseteq \mathcal{A}$, by definition.
- (ii) If \mathcal{A} is N-QO, then for every $x \in \mathcal{A}$, there exists N-OS \mathcal{O}_x so that \mathcal{O}_x is N-OS with respect to either \mathcal{T}_1 or \mathcal{T}_2 such that $x \in \mathcal{O}_x \subseteq \mathcal{A}$.

Now, if $x \in \mathcal{A}^{NQ-int}$, then $x \in \mathcal{Q}_x$, where \mathcal{Q}_x is *N-QO* and the same will be the case for every $x \in \mathcal{A}$ and by *proposition 3.6.1* since \mathcal{A}^{NQ-int} is the

union of *N-QO* sets which are subsets of \mathcal{A} so \mathcal{A}^{NQ-int} will also be a *N-QO* set and thus: $\cup \{Q_x : x \in \mathcal{A}\} = \mathcal{A}$.

(iii) We have: $\mathcal{A}^{T_{12}-Nint} = (\mathcal{A}^{T_2-Nint})^{T_1-Nint}$ = $\cup \{\mathcal{O}_i : \text{ each } \mathcal{O}_i \text{ is } T_1-N-OS \text{ and } \mathcal{O}_i \subseteq \mathcal{A}^{T_2-Nint} \}$

This can be a null set if there is no such subset which is \mathcal{T}_1 -N-OS.

However, $\mathcal{A}^{NQ-int} = \cup \{\mathcal{O}_i : \text{ each } \mathcal{O}_i \text{ is } N\text{-}QO \text{ and each } \mathcal{O}_i \subseteq \mathcal{A}\} \neq \emptyset$ because a subset is N-QO if and only if for every element that belongs to it, there is always a N-OS in either of the two N-Ts which is contained in the subset.

Thus, $\mathcal{A}^{T_{12}-Nint} \subseteq \mathcal{A}^{NQ-int}$

- (iv) We have $\mathcal{A}^{NQ-int} = \cup \{\mathcal{O}_i : \text{ each } \mathcal{O}_i \text{ is } N\text{-}QO \text{ and each } \mathcal{O}_i \subseteq \mathcal{A}\}$ $\subseteq \cup \{\mathcal{O}_i : \text{ each } \mathcal{O}_i \text{ is } N\text{-}QO \text{ and each } \mathcal{O}_i \subseteq \mathcal{B}\} = \mathcal{B}^{NQ-int},$ since $\mathcal{A} \subseteq \mathcal{B}$ and the number of N-QO sets may be more in the later union.
- For every $x \in (\mathcal{A} \cap \mathcal{B})^{NQ-int}$, $x \in \mathcal{O}_x$ so that \mathcal{O}_x is N-QO and $\mathcal{O}_x \subseteq \mathcal{A} \cap \mathcal{B}$ which gives $\mathcal{O}_x \subseteq \mathcal{A}$ and $\mathcal{O}_x \subseteq \mathcal{B}$ which in turn shows that $\mathcal{O}_x \subseteq \mathcal{A}^{NQ-int}$ and $\mathcal{O}_x \subseteq \mathcal{B}^{NQ-int}$ thereby showing that $\mathcal{O}_x \subseteq \mathcal{A}^{NQ-int} \cap \mathcal{B}^{NQ-int}$ and hence we have: $(\mathcal{A} \cap \mathcal{B})^{NQ-int} \subseteq (\mathcal{A}^{NQ-int}) \cap (\mathcal{B}^{NQ-int})$.

 Conversely, for every $x \in (\mathcal{A}^{NQ-int}) \cap (\mathcal{B}^{NQ-int})$, we have $x \in \mathcal{Q}_x$ where \mathcal{Q}_x is N-QO and $\mathcal{Q}_x \subseteq \mathcal{A}^{NQ-int} \cap \mathcal{B}^{NQ-int}$ which shows that $\mathcal{Q}_x \subseteq \mathcal{A}^{NQ-int}$ and $\mathcal{Q}_x \subseteq \mathcal{B}^{NQ-int}$ which in turn implies that $\mathcal{Q}_x \subseteq \mathcal{A}$ and $\mathcal{Q}_x \subseteq \mathcal{B}$ implying that $\mathcal{Q}_x \subseteq \mathcal{A} \cap \mathcal{B}$.

Thus, $x \in \mathcal{Q}_x \subseteq \mathcal{A} \cap \mathcal{B}$ which implies that $x \in \mathcal{Q}_x$ and \mathcal{Q}_x is N-QO and $\mathcal{Q}_x \subseteq \mathcal{A} \cap \mathcal{B}$ thereby showing that $x \in (\mathcal{A} \cap \mathcal{B})^{NQ-int}$

Hence, $(\mathcal{A} \cap \mathcal{B})^{NQ-int} = (\mathcal{A}^{NQ-int}) \cap (\mathcal{B}^{NQ-int})$

(vi) For every $x \in (\mathcal{A}^{NQ-int}) \cup (\mathcal{B}^{NQ-int})$ we have $x \in \mathcal{A}^{NQ-int}$ or, $x \in \mathcal{B}^{NQ-int}$ which gives: $x \in \mathcal{P}_x \subseteq \mathcal{A}$ or $x \in \mathcal{Q}_x \subseteq \mathcal{B}$ where \mathcal{P}_x and \mathcal{Q}_x are N-QO sets. This, in turn, shows that $x \in \mathcal{P}_x \cup \mathcal{Q}_x \subseteq \mathcal{A} \cup \mathcal{B}$.

Now, union of two *N-QO* sets, by *proposition 6.1*, is *N-QO*, thereby showing that $x \in (\mathcal{A} \cup \mathcal{B})^{NQ-int}$.

Hence, we get: $(\mathcal{A}^{NQ-int}) \cup (\mathcal{B}^{NQ-int}) \subseteq (\mathcal{A} \cup \mathcal{B})^{NQ-int}$

Remark 3.6.2

Equality will hold in (v) above and it is because by **proposition 3.6.1**, every N-OS is N-OO.

Definition 3.6.3

Let $(X, \mathcal{T}_1, \mathcal{T}_2)$ be a N-B-TS and $A \subseteq X$, then the subset A will be called Neutro-pseudo-open, written as N-PO, if it is a N-OS in $\mathcal{T}_1 \cup \mathcal{T}_2$.

Remark 3.6.3

Every *N-PO* set is *N-QO* but the converse is not necessarily true.

Definition 3.6.4

For a N-B-TS $(X, \mathcal{T}_1, \mathcal{T}_2)$, if $A \subseteq X$, then the Nu-quasi-closure of A, denoted by A^{NQ-Cl} and is defined as $A^{NQ-Cl} = A^{\mathcal{T}_1-Ncl} \cap A^{\mathcal{T}_2-Ncl}$.

Proposition 3.6.3

For a N-B-TS $(X, \mathcal{T}_1, \mathcal{T}_2)$, and $\mathcal{A} \subseteq X$, if \mathcal{A} is \mathcal{T}_{12} -N-CS then $\mathcal{A}^{NQ-Cl} = \mathcal{A}$.

Proof:

If \mathcal{A} is NCS then by **proposition 2.3.2** $\mathcal{A}^{T_1-Ncl} = \mathcal{A}$ and $\mathcal{A}^{T_2-Ncl} = \mathcal{A}$ and hence $\mathcal{A}^{NQ-Cl} = \mathcal{A}^{T_1-Ncl} \cap \mathcal{A}^{T_2-Ncl} = \mathcal{A} \cap \mathcal{A} = \mathcal{A}$.

Proposition 3.6.4

For a N-B-TS $(X, \mathcal{T}_1, \mathcal{T}_2)$, if $\mathcal{A}, \mathcal{B} \subseteq \mathcal{X}$ then the results that follows are true.

- (i) $\mathcal{A}^{NQ-Cl} \subseteq \mathcal{A}^{\mathcal{T}_{12}-Ncl}$
- (ii) $\mathcal{A} \subseteq \mathcal{A}^{NQ-Cl}$
- $(iii) \quad (\mathcal{A}^{NQ-Cl})^{NQ-Cl} \subseteq \mathcal{A}^{NQ-Cl}$
- (iv) If $\mathcal{A} \subseteq \mathcal{B}$ then $\mathcal{A}^{NQ-Cl} \subseteq \mathcal{B}^{NQ-Cl}$

Proof:

$$\begin{split} (i) & \quad \text{We have } \mathcal{A}^{NQ-Cl} = \mathcal{A}^{\mathcal{T}_1-Ncl} \cap \mathcal{A}^{\mathcal{T}_2-Ncl} \text{ and,} \\ & \quad \mathcal{A}^{\mathcal{T}_{12}-Ncl} = (\mathcal{A}^{\mathcal{T}_2-Ncl})^{\mathcal{T}_1-Ncl} = \cup \left\{ \mathcal{C}_i \colon \text{each } \mathcal{C}_i \text{ is } \mathcal{T}_1-NCS \text{ and } \mathcal{A}^{\mathcal{T}_2-Ncl} \subseteq \mathcal{C}_i \right\} \\ & \quad \text{Now, if } \mathcal{A}^{\mathcal{T}_2-Ncl} \subset \mathcal{X}, \text{ then } \mathcal{A}^{NQ-Cl} = \mathcal{A}^{\mathcal{T}_1-Ncl} \cap \mathcal{A}^{\mathcal{T}_2-Ncl} \subset \mathcal{X}, \text{ whatever } \\ & \quad \text{the value of } \mathcal{A}^{\mathcal{T}_1-Ncl} \text{ be.} \\ & \quad \text{But } \mathcal{A}^{\mathcal{T}_{12}-Ncl} = (\mathcal{A}^{\mathcal{T}_2-Ncl})^{\mathcal{T}_1-Ncl} = \mathcal{X}, \text{ if } \mathcal{A}^{\mathcal{T}_2-Ncl} \subset \mathcal{X} \text{ but no such } \mathcal{C} \subset \mathcal{X} \\ & \quad \text{exist so that } \mathcal{A}^{\mathcal{T}_2-Ncl} \subseteq \mathcal{C}. \text{ Hence } \mathcal{A}^{NQ-Cl} \subseteq \mathcal{A}^{\mathcal{T}_{12}-Ncl} \text{ in general} \end{split}$$

(ii) From **proposition 3.3.2** (i)
$$\mathcal{A} \subseteq \mathcal{A}^{T_1-Ncl}$$
 and $\mathcal{A} \subseteq \mathcal{A}^{T_2-Ncl}$ and hence we have $\mathcal{A} \subseteq \mathcal{A}^{T_1-Ncl} \cap \mathcal{A}^{T_2-Ncl} = \mathcal{A}^{NQ-Cl}$

(iii) We have:
$$(\mathcal{A}^{NQ-Cl})^{NQ-Cl}$$

$$= (\mathcal{A}^{T_1-Ncl} \cap \mathcal{A}^{T_2-Ncl})^{NQ-Cl}$$

$$= (\mathcal{A}^{T_1-Ncl} \cap \mathcal{A}^{T_2-Ncl})^{T_1-Ncl} \cap (\mathcal{A}^{T_1-Ncl} \cap \mathcal{A}^{T_2-Ncl})^{T_2-Ncl}$$

$$\subseteq [(\mathcal{A}^{T_1-Ncl})^{T_1-Ncl} \cap (\mathcal{A}^{T_2-Ncl})^{T_1-Ncl}] \cap [(\mathcal{A}^{T_1-Ncl})^{T_2-Ncl} \cap (\mathcal{A}^{T_2-Ncl})^{T_2-Ncl}] \cap [(\mathcal{A}^{T_1-Ncl})^{T_2-Ncl}] \cap (\mathcal{A}^{T_2-Ncl})^{T_2-Ncl}] \cap [(\mathcal{A}^{T_1-Ncl})^{T_2-Ncl}] \cap [(\mathcal{A}^{T_1-Ncl})^{T_1-Ncl}] \cap [(\mathcal{A}^$$

(iv) We have:
$$\mathcal{A}^{NQ-Cl} = \mathcal{A}^{\mathcal{T}_1-Ncl} \cap \mathcal{A}^{\mathcal{T}_2-Ncl}$$

Now, $\mathcal{A}^{\mathcal{T}_1-Ncl} \subseteq \mathcal{B}^{\mathcal{T}_1-Ncl}$ and $\mathcal{A}^{\mathcal{T}_2-Ncl} \subseteq \mathcal{B}^{\mathcal{T}_2-Ncl}$ if $\mathcal{A} \subseteq \mathcal{B}$,

[proposition 2.3.3 (iii)]

Hence,
$$\mathcal{A}^{T_1-Ncl} \cap \mathcal{A}^{T_2-Ncl} \subseteq \mathcal{B}^{T_1-Ncl} \cap \mathcal{B}^{T_2-Ncl}$$

Or, $\mathcal{A}^{NQ-cl} \subseteq \mathcal{B}^{NQ-cl}$