CHAPTER 4

Study on Interior, Exterior, Closure, and Boundary in Anti-

Topological Spaces

In this chapter the aspects of interior, exterior, closure, and boundary are defined in
anti-topological spaces (A-TS) and the various properties of these aspects that are
generally true for GTS are inspected. Whenever certain properties that are valid in GTS
are found to be not holding in the A-TS, those results are substituted by similar results
with different conditions, like if equality does not hold for a certain property, then it is
verified whether containment is satisfied and if true such results with equality are

replaced by results with containment.

4.0 Some basic concepts in Anti-Topological Spaces
Proposition 4.0.1
For a non-empty set X and a collection of subsets T of X, referred to as anti-open sets
(A-0S), T is an anti-topology (A-T) and (X, T) an A-TS if all of the following are true:
(i) The null-set and the whole set are not in T°.
(i) There union of members of T are notin 7.

(ili)  There intersection of members of T are notin 7.

Remark 4.0.1

The union of A-Ts need not necessarily be an A-T. It can be seen by the following
example: If we assume X = {1,2,3,4,5} and consider 7; = {{1}, {2}, {3}, {4},{5}} and
T = {{1,2},{1,3},{2,3},{2,4}, {3,4}} to be two ATs on the set X.

Then, 73 U T, = {{{1}, {2}, {3}, {4}, {5}, {1,2},{1,3},{2,3},{2,4}, {3,4}} is not an A-T on
X because the collection defies proposition 4.0.1 as {1},{2},{1,2} € 7; U T5.

Some of the results discussed in this chapter have been published in: Basumatary, B., & Khaklary, J.K.
(2022). A Study on the Properties of Anti-Topological Spaces. Neutrosophic Algebraic Structures and their
Applications, (pp. 16-27), 1GI Global.



The intersection of two A-Ts on a set need not be an A-T on the set because if we
consider the above A-Ts, we have 7; N 7, = @ and it is not an A-T.

Proposition 4.0.2

For an A-TS (X,7) and A, B < X, the following properties are synonymous with 7°:
0] A,B & T whenever, AUBET
(i) A,B¢&T whenever ANBET
(i) B ¢ T whenever A € Tand B € A

4.1 Interior in Anti-Topological Spaces

Definition 4.1.1

Let (X, T) be an A-TS on the set X and A be a proper subset of X, the anti-interior of
A is defined to be union of the subsets of A which are A-O and denoted by AA™ =it
That is, AA™MI= =y {0;: 0; € A and each 0; is A-O}.

We define: gAnti-int = @,

Remark 4.1.1

In an A-TS, the null set is not anti-open and as such there will be instances of non-
existences of A-O subsets while trying to find the anti-interior of certain sets. If no A-O
subsets exist for a particular set, we will conclude that the anti-interior of that set does
not exist with respect to the A-T in context. However, in trying to establish results for
the anti-interior in the few propositions that follows, it has been assumed that the anti-
interior exists for the subsets we have considered. In other words, it has been suggested

that cases of non-existences of anti-interiors are ignored.

Proposition 4.1.1

Let (X,7) be an A-TS on the set X and A S X, then if A is A-O then A4t = 4,

Remark 4.1.2

In an A-TS X and for any A c X, A4™ ="t need not be the largest A-O subset
contained in A. This fact is because, in an A-TS, the union of A-OSs is not A-O. The
following example may be considered:

Consider X ={1,2345} and 7T ={{1,2},{13},{1,4},{23}{24},{34}} and
consider A = {2,3,4} then A4™ =t = {2 3} U {2,4} = {2,3,4} = A. However, A is
not A-O.



The above example also shows that proposition 4.1.1 is not always true the other way

around. That is if AA™ = 4, then A need not be necessarily A-O.

Proposition 4.1.2
If (X,T)isan A-TS and A, B < X then the following results are true:

()
(i)
(iii)
(iv)
(V)

Proof:

(i)

(i)

(iii)

(iv)

(v)

cqunL‘i—inl: cCA

(cﬂAnti—int)Anti—int — cﬂAnti—int

If A € B then qunti—int C BAnti—int

(c/l N B)Anti—int c UqAnti—int N BAnti—int.

cﬂAnti—int U BAnti—int c (cfl U B)Anti—int.

Consider an element x that belongs to the anti-interior of A then x is
contained in some A-OS B; which are all subsets of the set .4 and hence the
result.
Let AAM It = 9 =y {0;: each 0; is A-OS and each O; € A}, then
(AAnti=intyAnti-int — ((9)Anti-int

=U {0;:each0;is A-OS, each0; € A}

— O = AAnti-int
We have by (i) A4™-nt c 4 cBand hence A4~ € B . Now,
AAnti-int s 3 ynion of A-OSs which are contained in B and so it will either
be the anti-interior of B or contained in the anti-interior of B.
That iS, c,qAnti—int — BAnti—int or c,qAnti—int c BAnti—int C B.
In either case, AAMI-int ¢ BAnti-int jf 4 c B,
We have A NB < A and using (iii) above will give:
(A N B)Anti-int ¢ gAnti=int gnd 4 N B S B with (iii) gives:
(A N B)Anti-int ¢ gAnti-int
Hence (A N B)Anti=int ¢ ganti-int  ganti-int
Let x € qunti—int U BAnti—int
= x € AANtI-INt gp 4 ¢ BANti-int
>x€0,CAMNx€EO03EB=>x€0,U03S AUB

> x € (dq U B)Nt—int and hence cAAnti—int U BAnti—int c (c/l U B)Anti—int.



Remark 4.1.3

In the case of GTS equality holds in case of the result (iv) which however is not the case
in A-TS, and the following example illustrates the case. Consider X = {1,2,3,4,5} and
an let 7 = {{1,2},{1,3},{1,4},{1,5},{2,3}, {2,4}, {3,4}, {4,5}, then (X,T) is an A-TS.
Let A ={2,3,4,5} and B = {1,2,3,5} then A NB = {2,3,5} and (A N B)Anti-int —
(2,3} . Also, AA™MI-nt = (2345} and BAMI-nt = {123,5} , so AAMITINENn
BAnL=Int — (2 3 5}, Thus, (A N B)AM-nt o gAanti=int o gAnti=int jn general in the

case of an A-TS.

Remark 4.1.4
The reason for proposition 4.1.2 (iv) not holding for the equality sign as in the case of
GTS is because intersection of A-OSs in an A-TS is not A-O.

Definition 4.1.2
For an A-TS (X,T) and A, B < X, the anti-interior operator on the space X is a
function Anti — int: 3(X) = J(X) such that:

(i) AAnti-int = g

o\ Anti—int .
i Anti— Anti—
(”) (uq nti mt) A nti—int

(III) (c/l n B)Anti—int c (cﬂAnti_int) n (BAnti—int)

(IV) (AU B)Anti—int c (cﬂAnti—int) U (BAnti—int)

4.2  Exterior in Anti-Topological Spaces

Definition 4.2.1

For an A-TS (X,T) and A € X, the anti-exterior of A is defined as the union of
subsets of ccA which are A-O and is denoted by AA™=¢Xt That is, AA™MI—ext =y

{0;:0; € cA and each O; is A-O}. We define: XAnti=ext = ¢ and gAnti-ext = x,

Remark 4.2.1
AAnti—ext js the union of all subsets of the A-T that do not intersect A. Thus, A Anti—ext

is larger than any other A-OS that do not intersect A.

Proposition 4.2.1
Let (X, T) be an A-TS on the set X and A, B € X, then the following are true:



(I) c/qAnti—ext CcA

(”) cﬂAnti—ext — (qu)Anti—int

(III) c/qAnti—ext — [C(cﬂAnti—ext)]Anti—ext

(iv) qunti—int — (qu)Anti—ext

(V) If A C B, then c/lAnti—ext ) BAnti—ext

(Vi) (cﬂAnt—ext)Anti—ext - qunti—int

(VII) (dq U B)Anti—ext c c/lAnti—ext N BAnti—ext
(Viii) AAnti-ext \y ganti-ext ¢ (4 n B)Anti-ext
(ix)  AAMI=ext = cA if A is Anti-closed (A-C)

(X) AAnti-int ~ gAnti-ext — 1)
Proof:

(i)  AAM—ext = (cA)Anti-int ¢ c.4 by proposition 4.1.2 (i).
(i) By definition: A4™ =Xt =y {0;: 0; € cA and each 0; is A-O}
— (cA)Anti=int
(iii))  We have:
[C(cﬂAnti—ext)]Anti—ext — [C(ccﬂ)Anti—int]Anti—ext’ by (”)
= [cfc(cA)Anti=inty|Anti=int by (i)
— [(cA)Anti=int]Anti=int (. A) = A.

— (Ccﬂ)Anti—int (qunti—int)Anti—int — cAAnti—int
— c,qAnti—ext
(iv)  We have: (ccA)A™Mi=ext =y {0;: 0; S c(cA) and each 0; is A-O}
=U{0;:0; € A and each 0; is A-O}
— c,qAnti—int.
(V) We have A € B = ¢B S cA
= (¢B)AMi-int ¢ (cA)A™M=int hy proposition 4.1.2 (iii)
= BAnti—ext c c/qAnti—ext
(vi) By (i) A4™=ext < cA and by (v) we have:
(cﬂAnti—ext)Anti—ext - (Ccﬂ)Anti—ext: (CCcﬂ)Anti_int: AAnti-int
Thus (qunti—ext)Anti—ext - cAAnti—int

(vii)  We have:



(A U B)Anti=ext = (¢(A U B))Anti-int
= (cA N cB)AMti=int
C (cA)AM-int 0 (¢B)Anti—int Ty proposition 4.1.2 (iv)]
— qAnti-ext o gAnti-ext
Thus, (c/q, U B)Anti—ext C cﬂAnti—ext ) BAnti—ext'
(V”l) qunti—ext U BAnti—ext - (Cﬂ)Anti—int U (CB)Anti—int
C (cA U cB)Ant-int [y proposition 4.1.2 (V)]
= (c(A N B))Anti-int
= (A N B)Anti-ext,
Thus, CAAnti—ext U BAnti—ext C (c/q, N B)Anti—ext
(ixX)  We have AA™MI=ext = (cA)AM-Int = ¢4 since, if A is A-C then cA is A-
O and AAM-int — 4 if A is A-O. Hence the result.
(X) Let x € UqAnti—iTLt ) qunti—ext
=x € CAAnti—int and1 x € tAAnti—ext
=x € qunti—int and, x € (Cu‘l)Anti_int
= x € AN © A and, x € AAMIEX € c A
= x € A and, x € cA, which is not possible.

Hence, qunti—int N cﬂAnti—ext — (Z)

Definition 4.2.2
For an A-TS (X,T) and A, B € X, the anti-exterior operator on the space X is a
function: Anti — ext: 7(X) — J(X) such that:

(I) qunti—ext CcA

(||) qunti—ext — [C(cﬂAnti—ext)]Anti—ext
(iii) (A U B)Anti-ext ¢ (CAAnti—ext) N (BAnti—ext)

(iV) (c/l N B)Anti—ext -) (CAAnti—ext) U (BAnti—ext)

4.3  Closure in Anti-Topological Spaces

Definition 4.3.1

Let (X,T) be an A-TS and A € T, then the complement of A, i.e., ccA will be called as
anti-closed (A-C).



Proposition 4.3.1

Inan ATS (X, T), all of (i), (i) and (iii) will satisfy:
(1) The null set and the whole set will not be A-C.
(i) Union of members of 7 will not be A-C.

(iii)  Intersection of members of 7" will not be A-C.

Definition 4.3.2

For an A-TS (X,T) and A € X, the anti-closure of A will be the intersection of the A-
C supersets of A and will be denoted by A4™t=¢t,

Thus, A4™=¢t =n {¢;: A S C;and each C; is A-CS}

We define: X4nti=cl = x and g4A™ti—<t = @,

Remark 4.3.1

In an A-TS, since the null set is not A-O, so the whole set will not be A-C and as such
while trying to find the closure of subsets of the whole set, in context, there will be
instances that there will be no A-C supersets of many subsets. Under such
circumstances, we have to conclude that the anti-closures of such sets do not exist. In
general, we will assume that the anti-closure exists in order to establish results with
respect to the anti-closure. Thus, in all the results that follow in the few propositions
below, it has been assumed that the anti-closures exist for the subsets we have

considered.

Proposition 4.3.2
For an A-TS (X, T) and A € X, if A is A-C then A4l = 4.

Remark 4.3.2

The converse of the above proposition is not always and can be observed from the
following example. Let X ={a,b,c,d,e} andT = {{a}, {b},{c,d},{d,e}}, the A-C
subsets are: {b,c,d, e}, {a,c,d, e}, {a, b, e} {a b,c} . Consider A ={cd, e}, then
AAnti=cl = fp c,d,e}n{a,c,d e} ={c,d,e} = A. But, A is not an A-C subset of X.

Remark 4.3.3
The anti-closure of a subset Aof an A-TS (X, T) is not the largest A-CS containing the

set A. The counter example provided in remark 4.3.2 illustrates the fact.



Proposition 4.3.3
Let (X, T) be an ATS and A, B < X, then the following holds:

(i) A C AAnti-cl

(ii) (qunti—cl)Anti—cl — AAnti—cl

(iiiy ACB= AAnti=cl ¢ gAnti-cl

(iv) AAnti—cl | gAnti-cl ¢ (AU B)Anti—cl

(v) (A N B)Anti=cl ¢ gAnti=cl n gAnti-cl

Proof:

(i) By definition, A4™=¢! =n {€;: A < C; and each C; is A-CS} 2 A.

(i)  We have A4™=¢t =n {¢;: A < C;and each C; is ACS} = B (say). Here B is
the smallest superset of A. If B is A-C, then B4™ =l = B by proposition
4.3.2 and we have the result. However, if B is not A-C, which is possible by
remarks 4.3.2 and 4.3.3, then B4"=¢! =n {€&: B c Eand £ is A — €S} =n
{F: A< FandFisA— CS} =B, because B is the smallest superset of A
and there will be no other supersets other than those that are larger than B
and all of which are supersets of A.

(iii) By (i) we have: A € A4™ =L and B © BA™MI=¢<L,
Now, BAMI=Cl =n{K:BCK; KisA—CS} and A S B= A =n
{L: AC L LisA—CS}CN{K:B S K} = BA™i~<l and hence the result.

(iv) By (iii), A € AU B = Al C (A U B)Anti—¢l
And B € A U B = BAMI~¢l ¢ (A U B)Anti~cl
Hence A AMti=cl y BAnti=cl c (4 y B)Anti=cl

(v) By (iii),ANBES A= (AN B)Anti—cl c A Anti—cl
ANdANBEB= (AN B)Anti—cl c BAnti—cl
Hence, (A N B)Anti=cl ¢ gAanti—cl  ganti=cl,

Remark 4.3.4

Equality will not hold in proposition 4.3.3 (iv), and can be seen from the example that

follows:

Assume that X = {1,2,3,4,5}and T = {{1}, {2,3},{2,4}, {3,4}, {5}}where the A-CSs are:
{2,3,4,5},{1,4,5},{1,3,5},{1,2,5},{1,2,3,4} . Consider A = {1,2} and B = {3}, then



c/qAnti—cl — {1’2} and BAnti—cl — {3} and as such c,qAnti—cl U BAnti—cl — {1,2,3}_ NOW,
A U B = {1,2,3} and as such we have (A U B)Anti=cl = {12 3 4}.

Hence, qunti—cl U BAnti—cl + (c/l U B)Anti—cl.

Definition 4.3.3
If (X,T) is an ATS, with A, B € X, then the anti-closure operator on the space X is a
function: Anti — cl: 7(X) — J(X) such that:

(I) A C qunti—cl

(i) AAnti=cly ganti-cl c (4 y B)Anti=cl

(iii) (CAAnti—cl)Anti—cl = gAnti—cl

Proposition 4.3.4
Let (X,7) be an A-TS and A < X, the we have the following relations between the
anti-interior and anti-closure:

(I) C(CAAnti—int) — (cﬂ)Anti—cl

(ii) (Ccﬂ)Anti—int — C(UqAnti—cl)

(iii) AAnti-int — C((qu)Anti—cl)

(iV) c((cc/l)Anti_int) — qunti—cl.

(V) (cﬂ \ B)Anti—int = AAnti-int \ BAnti—cl

(Vi) (cﬂ \ B)Anti—cl = AAnti—cl \ RBAnti-int

Proof:

(i)  We have: A4™-int —y ©; so that each 0; is A-OS and 0; € A.
Thus, ¢(A4™=It) = ¢(U 0;) so that ¢(0;) 2 ¢(A)
Or, c(AAMt=nt) =n (c0;) so that each c0;is A-CS and ¢(A) S c(0;)
Or, ¢(AA™M=int) =n ¢; so that each C; is A-CS and ¢(A) S C;
Or, c(AAmt=int) = (cA)Anti=cl

(i)  We have: A4™=¢ =n ¢; so that each C; is A-CS and A S C;.
Thus, c(AA™M 1) = ¢(N €;) s0 that ¢(A) 2 ¢(C;)
Or, ¢(AA™M=¢l) =u (cC;) so that each cC; is A-OS and ¢(C;) S ¢(A)
or, ¢(A4™Mi=¢t) =y (0;) so that each 0; is A-OS and U (0;) € ¢(A)
Or, c(AAnti=cl) = (cA)Anti-int



(iii)  We have(cA)A™=¢t =n ¢;, where each C; is A-CS and cA S C;.
S0, c(cA)AM=¢Cl = ¢(Nn ;) so that c(cA) 2 ¢cC;
Or, c(cA)AM=cl =y (cC;) so that each cC; is A-OS and cC; € A
Or, c(cA)Anti=cl =y (D;) so that each D; is A-OS and D; € A.
Or C(Cc/l)Anti_Cl — cﬂAnti—int.
(iv)  We have(cA)4™=int =y B; so that each B; is A-OS and B; S cA
S0, c((cA)A™M-inty = ¢(U B;) so that each B; is A-OS and B; S cA
Or, c((cA)AM=inty =n (¢B;) so that each ¢B; is A-CS and ¢B; 2 c(cA)
or, c((cA)Ant=nty = (¢;) so that each C; is A-CS and A < C;.
Or C((cﬂ)Anti—int) — qunti—cl.
(v) We have:
A Anti-int \ BAnti—cl — gAnti—int A C(BAnti—cl)
— qunti—int N (CB)Anti—int by (”)
2 (A N cB)A™=int hy proposition 4.1.2 (iv).
— (cfl \ B)Anti—int
Hence (c/l \ B)Anti—int C AAnti-int \ BAnti—cl
Conversely, let x € AAMI-nE \ pAnti=cl
= x € c,qAnti—int but x ¢ BAnti—cl
>x€EAbutx ¢ B
=>x€A\B
= x€ (cfl \ B)Anti—int as x € qunti—int
Thus c/lAnti—int \ BAnti—cl c (c/l \ B)Anti—int
Hence (cfl \ B)Anti—int — c/qAnti—inlf \ BAnti—cl
(vi)  We have(A \ B)4™=¢l = (A N cB)Ati~¢l
c c/qAnti—cl N (CB)Anti—cl
= AAnti—cl o C(BAnti—int) by (I)
— c/qAnti—cl \ BAnti—int
Thus (c/l \ B)Anti—cl c c/qAnti—cl \ BAnti—int.
Conversely, let x € AAMI=cl\ pAnti-int
= c/qAnti—cl but x ¢ BAnti—int

= x € A=l put x ¢ B.

10



= x € (A \ B)A™ L since x € AAMC

Hence CAAnti—cl \ BAnti—int c (cfl \ B)Anti—cl.

Definition 4.3.4
A proper subset A of an A-TS (X, T") is termed anti-clopen set if it is both an anti-open

and an anti-closed set.

Remark 4.3.5

Remark 2.3.6 of chapter 2 states that a N-T cannot be a neutro-clopen topology because
the whole set and the null set are not present in a N-T simultaneously. If one of the two
is present, the other cannot be present and because of this, since they are complements
of each other, either the whole set or the empty set will not be a neutro-clopen set even
if the other subsets of the N-T are all neutro-clopen. However, in the A-T, since both the
whole set and the null set are not A-O, so an A-T can be an anti-clopen topology. For
example, we may take assume X = {1,2,3,4} and consider the A-T given by T =
{{1,2},{1,3},{1,4},{2,3}, {2,4}, {3,4}} which is obviously an anti-clopen topology.

4.4  Boundary in Anti-Topological Spaces

Definition 4.4.1

For an A-TS (X,7) and A € X, the anti-boundary of A, denoted by AA™~b4  js
defined as AA™MI~bd = gAanti=cl 0 (¢ 4)Anti=cL |n other words, the anti-boundary of
A consist of all those points that belong to the anti-closure of A4 and the anti-closure of

the complement of A.

Remark 4.4.1

The points that belong to the anti-boundary of A will be the points that will be neither
included in the anti-interior of <A nor the anti-exterior of A. An example may be
considered to have a clearer glimpse to the context. Let X ={1,23,4}, T =
{{1},{2,3},{2,4},{3,4}} and A = {1,2} then AA™I=Int = (1} = fAnti-ext = (3 4} and
AAnti-bd — (2}, as AAnti—cl _ {1,2} and (Ccﬂ)Anti—cl = {2,3,4}.

Proposition 4.4.1
If A is any proper subset of an ATS (X, T") then the following results are true:

(I) c/qAnti—bd — C(cﬂAnti—int U cAAnti—ext)

11



(i)
(iii)
(iv)
v)
(vi)

Proof:

(i)

(i)

(iv)

(v)

X = c/qAntl—mt UcﬂAntl—ext UcﬂAntl_bd
cﬂAntL—bd — quTltL—Cl \CAAntl—mt
c/qAntl—mt U (qu)AntL—mt — c(cﬂA”tl_bd)

cqunL‘i—inl: — dq\qunti—bd

Anti—cl _ Anti—int Anti—bd
A =A UA

By definition, if x € AA™~P4 then x ¢ AA™MI~NE and x ¢ AATEI—ext
S x e cjq'A‘n.ti—i‘I‘Lt“ U UqAnti—ext
& x € c(AANti-int |y g Anti-ext)
Hence, AARI-bd = o (qAnti-int j gAnti-ext)
From (i) we have: AA™MI=bd = p(gAanti=int y gAnti=extywhich leads to the
results: c,qATLti—bd N cﬂAnti—int — @ and c/qATlti—bd N c/qATlti—ext — @ thereby
leading to the conclusion that: X = AAn=Int y gAnti-ext y gAnti-bd
From (i), we have:
AANtI=bd — gAnti=cl o (g q)Anti=cl
= AAN=CLN\ o((cA)Ati=el)
= AAnti=cl\ gAnti=int [hy proposition 4.3.4 (iii)]

We have: C(cﬂAnti_bd) — C(cﬂAnti_Cl N (Ccﬂ)Anti_d)

= C(cﬂAnti_bd) — C(cﬂAnti_d) U C((Ccﬂ)Anti_d)

= c(AA-b) = (cA)Anti=int |y gantizint

[by proposition 4.3.4 (ii) and (iii)]

Hence, AARL=INt \y (cq)Anti=int — o(gARti-bdy,
Let x € cﬂAnti—int
So,x € Abutx & cA
= x € Aand x € A4 L hut x ¢ cAAMIC
= x € Aand (x € A™ L but x & cAAMICL)
= x € Abutx ¢ AAMIDd
= x €A \ AAMI-bd
Hence, AAM-int C 4 \ AAnti-bd,

Conversely, let x € A \ AA™~P4,

12



Then x € A but x & A4 24 50 there will be an A-OS 0, that contain x
such that 0, N cA = @ and x € 0, S A which shows that x € AAM =it
Thus, A \ AAMI-bd C gAnti-int
Hence, we have:A4M Nt = 4\ AfAnti=bd
(vi)  We have A4™ ¢l =n {¢: ¢ AC with A € C}
Hence, c(A4™ =) = c[n {C: C is ACS with A S C}]
=U {cC: cC is AOS with cC € cA}
— cﬂAnti—ext
Hence, c{c(AAMI=C)} = c(AANi-exty = gAnti=int | ganti=bd py (jj),

Thus cAAnti—cl =qunti—intquAnti—bd

Proposition 4.4.2

If A,B are arbitrary subsets of an A-TS X then:
(i) gAnti-bd — g
(i) AAnti=bd = (o q)Anti-bd

Proof:

(i) By proposition 4.4.1 (i), we have: AA™MI=Pd = c(gAantizint y gAanti-exty
wherein replacing A by @, we get: pAnti=bd = o(gAnti=int y ganti-ext) —
c(BUX)=c(X)=0.

(i)  We have: (coA)AMi—bd = (cA)Amti=cl n {c(cA)}Amti=cl = (coA)Anti=cl n

AAnti—cl — gAnti—cl A (Ccﬂ)Anti—cl = AAnti-bd

Remark 4.4.2

In an A-TS X, the boundary of A € X is not necessarily A-CS and can be seen from the
example that follows:

We may take X' = {ky, kz, k3, ky, ks} With T = {{kq}, {k3}, {ks, ka}, {ks, ks, {ka, ks
then clearly (JC, T)is an ATS. LetA = {ky, ky, k3}, then ccA = {k,, ks} and A4 ¢l =
{ki, ko ksl and  (cA)A™M= = (kg ky ks}  and  so  AAMTDE = gAanti=cln
(ccA)A™M=¢l = (k.} which is not A-C. However, in a GTS, the boundary of a subset of a
GTS is a closed set which has however been seen to be not true in the case of a subset of
an A-TS.
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Proposition 4.4.3

If A,B are arbitrary proper subsets of an A-TS X then the following are true:

()
(i)
(iii)
(iv)
Proof:

(i)

(ii)

(iii)

(cﬂAnti—int)Anti—bd C c;lAnti—bd

(cﬂAnti—cl)Anti—bd C qunti—bd

(cﬂ N B)Anti—bd c qunti—bd U BA‘nti—bd

(cﬂ U B)Anti—bd c qunti—bd U BA‘nti—bd

On applying the definition of the anti-boundary, we have:
(cﬂAnti—int)Anti—bd — (cﬂAnti—int)Anti—cl N [{C(cﬂAnti—int)}Anti—cl].

Anti—cl
]

= (AAntimintyAnti=cl o [((cq)Anti=cl) , [by proposition 4.3.4 (i)]
= (AAM-IntyAnti=cl 0 (c.q)Anti=cl Thy proposition 4.3.3 (ii)]
C AAmti=cl  (cq)Anti=cl since AAnti-int ¢ 4
_ gAnti-bd
Hence (AAmti-intydnti-bd ¢ g4nti-bd,
We have, (AAnti=clyanti=bd _ ( qAnti=clyAnti=cl (y ((qAnti=clyyAnti=cl
= AAM=CL 0 (c(AAM=Cl))Anti=cl [hy proposition 4.3.3 (ii)]
Now, A S AL = o(AAM) C cA
= (c(AAmtizchyyanti=cl ¢ (cq)Anti=cl [by proposition 4.3.3 (iii)]
ThUS, (qunti—Cl)ATlti—bd — cﬂAnti—Cl N (C(cﬂAnti—Cl))Anti—Cl
C AAnti=cl y (g A)Anti=cl = gAnti-bd

Hence' (cﬂAnti—Cl)Anti—bd c cﬂAnti—bd
On applying the definition, we get:
(A N B)Ati=bd = (4 n BYAnti=cl (¢ (A N B))Anti=cl
C [AAnti=cl ( BAnti=cl] n [(cA U ¢B)ANt=€l]
C [AAnti=el ( BAnti=cl]  [(cA)Anti=cl |y (¢B)Anti=cl]
— [AAnti=cl [ pAnti=cl (¢ q)Anti=cl] |y [qAnti=cl  BAnti=cl

N (cB)Anti=cl]
— [AAnti=cl \ (cA)Anti=cl (y pAnti=cl] | [ gAnti=cl  BAnticl

N (CB)Anti—cl]
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(iv)

— [{cﬂAnti—cl N (Cc/l)Anti_Cl} N BAnti—cl] U [qunti—cl N BAnti—cl
N (cB)Anti=cl]

— [(dq)Anti—bd N BAnti—cl] U [qunti—cl N BAnti—bd]

c (cﬂ)Anti—bd U BAnti—bd, since (dq)Anti—bd N BAnti—cl c (dq)Anti—bd and

also, qunti—cl N BAnti—bd c (B)Anti—bd

Hence, (cfl N B)Anti—bd c c/qAnti—bd U BAnti—bd_

On applying the definition, we get:

(A U B)Anti=bd — (4 y B)Anti=cl (y (¢(A U B))Anti=cl

c [cﬂAnti—cl U BAnti—cl] N [(ceA)Amti=cl n (¢B)Anti=cl]

= [(ccA)Anti=cl ( (¢B)Anti=cl] [cﬂAnti—cl U BAnti—cl]

= [(ccA)Amti=cl  (¢B)ARti=cl  gAnti=cl]  [(cA)Anti=el  (cB)Anti=cl
n BAnti=cl]

= [{(ccA)Anti=cl ( gAnti=cly y (¢B)Anti=cl] y [(cA)At=CL o [(¢B)Anti=cl
n BAnti=cly]

= [AAMI=bd  (B)Anti=cl]  [(cA)ANti=Cl n BARti=bd)

C AARti-bd (j BANti-bd gjnce gANti-bd  (oB)Anti-cl C gAnti-bd gng

(Ccﬂ)Anti—cl N BAnti—bd c BAnti—bd_

Hence, (dq U B)Anti—bd c CAAnti—bd U BAnti—bd_

Remark 4.4.3
That the equality does not hold in (i), (i) of proposition 4.4.3, can be illustrated as

follows:

(i)

For the inequality in proposition 4.4.3 (i), let us consider X =
{li, 12, 13,1y, Is} and T = {{l1}, {12}, {l3, s}, {13, Is}, {ls, 53}, clearly (X, T)is
an A-TS. Here the A-CS are: {l,,15,1,, 15} ,
{1,050, I3 {1, L, s {L, L, UL {L, L, L) Let A = {Uy, 1, 153, then cA =
(L, ls) , AAnt=int — 1 13 gAnti=cl = 1} (cA)Antizel =
{1314, 15} and SO AAMDE = {11,133 0 {13, 1, Is} = {13}
Also. (AARti=intyAnti=cl — (] ] yAnti=cl — (] 3 and
(c(AAMti-intyyanti=cl — | ] yAnti=cl — ] ] ]

So, (AANti-intyAnti-bd — ¢ Thys, ¢ = (AANtI-intyAnti-bd o gAnti-bd _

{ls}
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(i) For the inequality in proposition 4.4.3 (ii), let us take X = {l;,15,15,1,, 15}
and T = {{ll};{lél-}ﬁ{lZ; 13}; {IZP 15}' {l3' ZS}}v Clearly (‘x! :T) is an A-TS. Here
the A-CS are: {lp 13 L, s} {li, 1, 13, Is}, {1y, Loy s {ly, I3, L {La, o L
Let c/q = {lll lz, l3} y then Cc/q, == {14_, ls} y a.nd CAATI.ti—Cl = {l1’ lz, l3, ls} y
(Ccﬂ)Anti—cl — {14, 15}1 c}qAnti—bd — {ZS}
Now, (cﬂAnti—cl)Anti—cl — {ll' lz’ 13’ 15} and (C(cﬂAnti—cl))Anti—cl —

Anti—cl — Anti—clyAnti—bd _— Anti—clyAnti—cl

(L)) {ls} and so, (A ) (A ) n
(C(cﬂAnti—cl))Anti—cl — {llf 12’ 13, 15} N {14} = Q.

Thus, we have: @ = (UqAnti—cl)Anti—bd + AAnti-bd — {ls}-

4.5 Relative Topology of an Anti-Topological Space

Definition 4.5.1

For an A-TS (X,T) and A < X, we define the relative anti-topology 7., for A to be
the collection given by: 7, = {B N A:B € T}. The A-TS (A, T4) is called a sub-space
of the A-TS (X, T") and the A-T 74 is said to be induced by T'.

Example 4.5.1
Suppose X = {1,2,3,4,5}, then T = {{1,2},{1,3},{1,4},{1,5},{2,5},{3,4},{3,5}, {4,5}}
isan A-Ton X. If A = {1,3,4} then T, = {{1,3},{1,4}, {3,4}} is the relative A-T.

Proposition 4.5.1
Suppose (Y, Ty) is a sub-space of an A-TS (X, Tx), then the results that follow are true:
(i) A S Yis A-CinY if and only if there is an A-CS CinX sothat A =Cn
Y.
(i)  For every A S Y, AF " = A" N Y, where AF™ " is the Anti-
closure of A in X.
(iii) A subset P of Y will be a Ty-anti-nhd of a pointy € Y iff P =9 nY for
some Jy--anti-nhd Q of y.
(iv)  Forevery A €Y, A" € At
Proof:
(1) Let A be A-CinY
S cAISA-OINY
ScA=BNY,BisA-OinX
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(ii)

(iii)

(iv)

S A=c(BNY)

o A =c¢(B)Uc(Y), De-Morgan’s law

S A=c(B)Ud,sincec(Y) =0 A=c(B)=Y\B

©A=YncB

S A=YnNC,whereC =cBisA-CinX.

By definition: A"~ =n {D: D is A-CSin Y and A S D}
=N{CNY:CisA-CSinX and A S C N Y}, by (i)
=N{CNY:CisA-CSin X and A S C}
=[n{C:CisA-CSinXandACSC}NY

= A 0 Y, where A4 s the anti-closure of A in X.

Let us assume P to be a Jy-anti-nhd of a point y in Y. Then a 73-A-OS set

K will be there so that y € X < P. Thus, for a 7--A-OS 7 we have: y €

K =JnY < P.Now, if we assume Q = P U J, then Q is a Ty-anti-nhd of

y since 7 is a T-AOS such thaty € J < Q.

Further, NY=(PUNDNY=FnYPYUINY)=PUu@ny) =2,

sinceJNY < P.

Conversely, if P = @ nY for some Ty -anti-nhd Q of y. Then there exists a

JETysothaty € J € Qwhichmeansy € JNY <€ Q NnY = P. And since

J N'Y € Ty, so Pis a Jy-anti-nhd of the point y.

We have x € A4 = x is a Tye-interior point of A = A is a Ty-anti-

nhd of x = ANY is a Jy-anti-nhd of x > A S Y = x € AF*' " and

hence we must have A"~ € AN
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