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CHAPTER 4 

Study on Interior, Exterior, Closure, and Boundary in Anti-

Topological Spaces 

 

In this chapter the aspects of interior, exterior, closure, and boundary are defined in 

anti-topological spaces (A-TS) and the various properties of these aspects that are 

generally true for GTS are inspected. Whenever certain properties that are valid in GTS 

are found to be not holding in the A-TS, those results are substituted by similar results 

with different conditions, like if equality does not hold for a certain property, then it is 

verified whether containment is satisfied and if true such results with equality are 

replaced by results with containment.  

4.0 Some basic concepts in Anti-Topological Spaces 

Proposition 4.0.1 

For a non-empty set 𝒳 and a collection of subsets 𝒯 of 𝒳, referred to as anti-open sets 

(A-OS), 𝒯 is an anti-topology (A-T) and (𝒳, 𝒯) an A-TS if all of the following are true: 

(i) The null-set and the whole set are not in 𝒯. 

(ii) There union of members of  𝒯 are not in 𝒯. 

(iii) There intersection of members of  𝒯 are not in 𝒯. 

Remark 4.0.1 

The union of A-Ts need not necessarily be an A-T. It can be seen by the following 

example: If we assume 𝒳 = {1,2,3,4,5} and consider 𝒯1 = {{1}, {2}, {3}, {4}, {5}} and 

𝒯2 = {{1,2}, {1,3}, {2,3}, {2,4}, {3,4}} to be two ATs on the set 𝒳.  

Then, 𝒯1 ∪ 𝒯2 = {{{1}, {2}, {3}, {4}, {5}, {1,2}, {1,3}, {2,3}, {2,4}, {3,4}} is not an A-T on 

𝒳 because the collection defies proposition 4.0.1 as {1}, {2}, {1,2} ∈ 𝒯1 ∪ 𝒯2.  

___________________________ 
 

Some of the results discussed in this chapter have been published in: Basumatary, B., & Khaklary, J.K. 

(2022). A Study on the Properties of Anti-Topological Spaces. Neutrosophic Algebraic Structures and their 

Applications, (pp. 16-27), IGI Global. 

 



2 
 

The intersection of two A-Ts on a set need not be an A-T on the set because if we 

consider the above A-Ts, we have 𝒯1 ∩ 𝒯2 = ∅ and it is not an A-T. 

Proposition 4.0.2 

For an A-TS (𝒳, 𝒯) and 𝒜, ℬ ⊆ 𝒳, the following properties are synonymous with 𝒯: 

(i) 𝒜, ℬ ∉ 𝒯 whenever. 𝒜 ∪ ℬ ∈ 𝒯 

(ii) 𝒜, ℬ ∉ 𝒯 whenever 𝒜 ∩ ℬ ∈ 𝒯 

(iii) ℬ ∉ 𝒯 whenever 𝒜 ∈ 𝒯and ℬ ⊆ 𝒜 

4.1 Interior in Anti-Topological Spaces 

Definition 4.1.1 

Let (𝒳, 𝒯) be an A-TS on the set 𝒳 and 𝒜 be a proper subset of 𝒳, the anti-interior of 

𝒜 is defined to be union of the subsets of 𝒜 which are A-O and denoted by 𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡. 

That is, 𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 =∪ {𝒪𝑖: 𝒪𝑖 ⊆ 𝒜 and each 𝒪𝑖 is A-O}.  

We define: ∅𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 = ∅. 

Remark 4.1.1 

In an A-TS, the null set is not anti-open and as such there will be instances of non-

existences of A-O subsets while trying to find the anti-interior of certain sets. If no A-O 

subsets exist for a particular set, we will conclude that the anti-interior of that set does 

not exist with respect to the A-T in context. However, in trying to establish results for 

the anti-interior in the few propositions that follows, it has been assumed that the anti-

interior exists for the subsets we have considered. In other words, it has been suggested 

that cases of non-existences of anti-interiors are ignored.   

Proposition 4.1.1  

Let (𝒳, 𝒯) be an A-TS on the set 𝒳 and 𝒜 ⊆ 𝒳, then if 𝒜 is A-O then 𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 = 𝒜. 

Remark 4.1.2  

In an A-TS 𝒳  and for any 𝒜 ⊂ 𝒳 , 𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡  need not be the largest A-O subset 

contained in 𝒜. This fact is because, in an A-TS, the union of A-OSs is not A-O. The 

following example may be considered: 

Consider 𝒳 = {1,2,3,4,5} and 𝒯 = {{1,2}, {1,3}, {1,4}, {2,3}, {2,4}, {3,4}} and 

consider  𝒜 = {2,3,4}  then 𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 = {2,3} ∪ {2,4} = {2,3,4} = 𝒜 . However, 𝒜  is 

not A-O.  
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The above example also shows that proposition 4.1.1 is not always true the other way 

around. That is if 𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 = 𝒜, then 𝒜 need not be necessarily A-O. 

Proposition 4.1.2 

If (𝒳, 𝒯) is an A-TS and 𝒜, ℬ ⊆ 𝒳 then the following results are true: 

(i) 𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 ⊆ 𝒜. 

(ii) (𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡)𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 = 𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡. 

(iii) If 𝒜 ⊆ ℬ then 𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 ⊆ ℬ𝐴𝑛𝑡𝑖−𝑖𝑛𝑡. 

(iv) (𝒜 ∩ ℬ)𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 ⊆ 𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 ∩ ℬ𝐴𝑛𝑡𝑖−𝑖𝑛𝑡. 

(v) 𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 ∪ ℬ𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 ⊆ (𝒜 ∪ ℬ)𝐴𝑛𝑡𝑖−𝑖𝑛𝑡. 

Proof:  

(i) Consider an element 𝓍  that belongs to the anti-interior of 𝒜  then 𝓍  is 

contained in some A-OS ℬ𝑖 which are all subsets of the set 𝒜 and hence the 

result. 

(ii) Let 𝒜𝐴𝑛𝑡𝑖 −𝑖𝑛𝑡 = 𝒪 =∪ {𝒪𝑖: each 𝒪𝑖 is A-OS and each 𝒪𝑖 ⊆ 𝒜} , then 

(𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡)𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 = (𝒪)𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 

   =∪ {𝒪𝑖:each𝒪𝑖is A-OS, each𝒪𝑖 ⊆ 𝒜} 

            = 𝒪 = 𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 

(iii) We have by (i) 𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 ⊆ 𝒜 ⊆ ℬ and hence 𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 ⊆ ℬ . Now, 

𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 is a union of A-OSs which are contained in ℬ and so it will either 

be the anti-interior of ℬ or contained in the anti-interior of ℬ.  

That is, 𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 = ℬ𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 or 𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 ⊆ ℬ𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 ⊆ ℬ.  

In either case, 𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 ⊆ ℬ𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 if 𝒜 ⊆ ℬ. 

(iv) We have 𝒜 ∩ ℬ ⊆ 𝒜 and using (iii) above will give: 

(𝒜 ∩ ℬ)𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 ⊆ 𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 and 𝒜 ∩ ℬ ⊆ ℬ with (iii) gives:  

(𝒜 ∩ ℬ)𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 ⊂ ℬ𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 

Hence (𝒜 ∩ ℬ)𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 ⊆ 𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 ∩ ℬ𝐴𝑛𝑡𝑖−𝑖𝑛𝑡. 

(v) Let 𝓍 ∈ 𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 ∪ ℬ𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 

⇒ 𝓍 ∈ 𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 or, 𝓍 ∈ ℬ𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 

⇒ 𝓍 ∈ 𝒪𝒜 ⊆ 𝒜 or, 𝓍 ∈ 𝒪ℬ ⊆ ℬ ⇒ 𝓍 ∈ 𝒪𝒜 ∪ 𝒪ℬ ⊆ 𝒜 ∪ ℬ 

⇒ 𝓍 ∈ (𝒜 ∪ ℬ)𝑁𝑡−𝑖𝑛𝑡 and hence 𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 ∪ ℬ𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 ⊆ (𝒜 ∪ ℬ)𝐴𝑛𝑡𝑖−𝑖𝑛𝑡. 
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Remark 4.1.3  

In the case of GTS equality holds in case of the result (iv) which however is not the case 

in A-TS, and the following example illustrates the case. Consider 𝒳 = {1,2,3,4,5} and 

an let 𝒯 = {{1,2}, {1,3}, {1,4}, {1,5}, {2,3}, {2,4}, {3,4}, {4,5} , then (𝒳, 𝒯)  is an A-TS. 

Let 𝒜 = {2,3,4,5}  and ℬ = {1,2,3,5}  then 𝒜 ∩ ℬ = {2,3,5} and (𝒜 ∩ ℬ)𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 =

{2,3} . Also, 𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 = {2,3,4,5} and ℬ𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 = {1,2,3,5} , so 𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 ∩

ℬ𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 = {2,3,5}. Thus, (𝒜 ∩ ℬ)𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 ≠ 𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 ∩ ℬ𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 in general in the 

case of an A-TS. 

Remark 4.1.4  

The reason for proposition 4.1.2 (iv) not holding for the equality sign as in the case of 

GTS is because intersection of A-OSs in an A-TS is not A-O.  

Definition 4.1.2 

For an A-TS (𝒳, 𝒯) and  𝒜, ℬ ⊆ 𝒳 , the anti-interior operator on the space 𝒳  is a 

function 𝐴𝑛𝑡𝑖 − 𝑖𝑛𝑡: ℐ(𝒳) → ℐ(𝒳) such that: 

(i) 𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 ⊆ 𝒜 

(ii) (𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡
)

𝐴𝑛𝑡𝑖−𝑖𝑛𝑡
= 𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡

 

(iii) (𝒜 ∩ ℬ)𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 ⊆ (𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡
) ∩ (ℬ𝐴𝑛𝑡𝑖−𝑖𝑛𝑡) 

(iv) (𝒜 ∪ ℬ)𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 ⊆ (𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡
) ∪ (ℬ𝐴𝑛𝑡𝑖−𝑖𝑛𝑡) 

4.2 Exterior in Anti-Topological Spaces 

Definition 4.2.1 

For an A-TS (𝒳, 𝒯) and 𝒜 ⊆ 𝒳 , the anti-exterior of 𝒜  is defined as the union of 

subsets of 𝒸𝒜  which are A-O and is denoted by 𝒜𝐴𝑛𝑡𝑖−𝑒𝑥𝑡 . That is, 𝒜𝐴𝑛𝑡𝑖−𝑒𝑥𝑡 =∪

{𝒪𝑖: 𝒪𝑖 ⊆ 𝒸𝒜 𝑎𝑛𝑑 𝑒𝑎𝑐ℎ 𝒪𝑖 𝑖𝑠 A-O}. We define: 𝒳𝐴𝑛𝑡𝑖−𝑒𝑥𝑡 = ∅ and ∅𝐴𝑛𝑡𝑖−𝑒𝑥𝑡 = 𝒳. 

Remark 4.2.1  

𝒜𝐴𝑛𝑡𝑖−𝑒𝑥𝑡 is the union of all subsets of the A-T that do not intersect 𝒜. Thus, 𝒜𝐴𝑛𝑡𝑖−𝑒𝑥𝑡 

is larger than any other A-OS that do not intersect 𝒜.  

Proposition 4.2.1 

Let (𝒳, 𝒯) be an A-TS on the set 𝒳 and 𝒜, ℬ ⊆ 𝒳, then the following are true: 
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(i) 𝒜𝐴𝑛𝑡𝑖−𝑒𝑥𝑡 ⊆ 𝑐𝒜 

(ii) 𝒜𝐴𝑛𝑡𝑖−𝑒𝑥𝑡 = (𝑐𝒜)𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 

(iii) 𝒜𝐴𝑛𝑡𝑖−𝑒𝑥𝑡 = [𝒸(𝒜𝐴𝑛𝑡𝑖−𝑒𝑥𝑡)]𝐴𝑛𝑡𝑖−𝑒𝑥𝑡 

(iv) 𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 = (𝑐𝒜)𝐴𝑛𝑡𝑖−𝑒𝑥𝑡 

(v) If 𝒜 ⊆ ℬ, then 𝒜𝐴𝑛𝑡𝑖−𝑒𝑥𝑡 ⊇ ℬ𝐴𝑛𝑡𝑖−𝑒𝑥𝑡 

(vi) (𝒜𝐴𝑛𝑡−𝑒𝑥𝑡)𝐴𝑛𝑡𝑖−𝑒𝑥𝑡 ⊇ 𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 

(vii) (𝒜 ∪ ℬ)𝐴𝑛𝑡𝑖−𝑒𝑥𝑡 ⊆ 𝒜𝐴𝑛𝑡𝑖−𝑒𝑥𝑡 ∩ ℬ𝐴𝑛𝑡𝑖−𝑒𝑥𝑡 

(viii) 𝒜𝐴𝑛𝑡𝑖−𝑒𝑥𝑡 ∪ ℬ𝐴𝑛𝑡𝑖−𝑒𝑥𝑡 ⊆ (𝒜 ∩ ℬ)𝐴𝑛𝑡𝑖−𝑒𝑥𝑡 

(ix) 𝒜𝐴𝑛𝑡𝑖−𝑒𝑥𝑡 = 𝑐𝒜 if 𝒜 is Anti-closed (A-C) 

(x) 𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 ∩ 𝒜𝐴𝑛𝑡𝑖−𝑒𝑥𝑡 = ∅ 

Proof: 

(i) 𝒜𝐴𝑛𝑡𝑖−𝑒𝑥𝑡 = (𝑐𝒜)𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 ⊆ 𝑐𝒜 by proposition 4.1.2 (i). 

(ii) By definition: 𝒜𝐴𝑛𝑡𝑖−𝑒𝑥𝑡 =∪ {𝒪𝑖: 𝒪𝑖 ⊆ 𝒸𝒜 𝑎𝑛𝑑 𝑒𝑎𝑐ℎ 𝒪𝑖  𝑖𝑠 A-O} 

               = (𝒸𝒜)𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 

(iii) We have: 

   [𝒸(𝒜𝐴𝑛𝑡𝑖−𝑒𝑥𝑡)]𝐴𝑛𝑡𝑖−𝑒𝑥𝑡 = [𝒸(𝑐𝒜)𝐴𝑛𝑡𝑖−𝑖𝑛𝑡]𝐴𝑛𝑡𝑖−𝑒𝑥𝑡, by (ii). 

    = [𝒸{𝒸(𝑐𝒜)𝐴𝑛𝑡𝑖−𝑖𝑛𝑡}]𝐴𝑛𝑡𝑖−𝑖𝑛𝑡, by (ii) 

    = [(𝑐𝒜)𝐴𝑛𝑡𝑖−𝑖𝑛𝑡]𝐴𝑛𝑡𝑖−𝑖𝑛𝑡, 𝒸(𝑐𝒜) = 𝒜. 

    = (𝑐𝒜)𝐴𝑛𝑡𝑖−𝑖𝑛𝑡, (𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡)𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 = 𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 

    = 𝒜𝐴𝑛𝑡𝑖−𝑒𝑥𝑡 

(iv) We have: (𝑐𝒜)𝐴𝑛𝑡𝑖−𝑒𝑥𝑡 =∪ {𝒪𝑖: 𝒪𝑖 ⊆ 𝒸(𝒸𝒜) 𝑎𝑛𝑑 𝑒𝑎𝑐ℎ 𝒪𝑖  𝑖𝑠 A-O} 

         =∪ {𝒪𝑖: 𝒪𝑖 ⊆ 𝒜 𝑎𝑛𝑑 𝑒𝑎𝑐ℎ 𝒪𝑖 𝑖𝑠 A-O} 

         = 𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡. 

(v) We have 𝒜 ⊆ ℬ ⇒ 𝒸ℬ ⊆ 𝒸𝒜 

⇒ (𝒸ℬ)𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 ⊆ (𝒸𝒜)𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 by proposition 4.1.2 (iii) 

⇒ ℬ𝐴𝑛𝑡𝑖−𝑒𝑥𝑡 ⊆ 𝒜𝐴𝑛𝑡𝑖−𝑒𝑥𝑡 

(vi) By (i) 𝒜𝐴𝑛𝑡𝑖−𝑒𝑥𝑡 ⊆ 𝑐𝒜 and by (v) we have: 

(𝒜𝐴𝑛𝑡𝑖−𝑒𝑥𝑡)𝐴𝑛𝑡𝑖−𝑒𝑥𝑡 ⊇ (𝑐𝒜)𝐴𝑛𝑡𝑖−𝑒𝑥𝑡= (𝒸𝑐𝒜)𝐴𝑛𝑡𝑖−𝑖𝑛𝑡= 𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡. 

Thus, (𝒜𝐴𝑛𝑡𝑖−𝑒𝑥𝑡)𝐴𝑛𝑡𝑖−𝑒𝑥𝑡 ⊇ 𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 

(vii) We have: 
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(𝒜 ∪ ℬ)𝐴𝑛𝑡𝑖−𝑒𝑥𝑡 = (𝑐(𝒜 ∪ ℬ))𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 

           = (𝒸𝒜 ∩ 𝒸ℬ)𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 

           ⊆ (𝒸𝒜)𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 ∩ (𝒸ℬ)𝐴𝑛𝑡𝑖−𝑖𝑛𝑡, [by proposition 4.1.2 (iv)] 

                                               = 𝒜𝐴𝑛𝑡𝑖−𝑒𝑥𝑡 ∩ 𝒜𝐴𝑛𝑡𝑖−𝑒𝑥𝑡 

Thus, (𝒜 ∪ ℬ)𝐴𝑛𝑡𝑖−𝑒𝑥𝑡 ⊆ 𝒜𝐴𝑛𝑡𝑖−𝑒𝑥𝑡 ∩ ℬ𝐴𝑛𝑡𝑖−𝑒𝑥𝑡. 

(viii) 𝒜𝐴𝑛𝑡𝑖−𝑒𝑥𝑡 ∪ ℬ𝐴𝑛𝑡𝑖−𝑒𝑥𝑡 = (𝒸𝒜)𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 ∪ (𝒸ℬ)𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 

        ⊆ (𝒸𝒜 ∪ 𝒸ℬ)𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 [by proposition 4.1.2 (v)] 

             = (𝒸(𝒜 ∩ ℬ))𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 

        = (𝒜 ∩ ℬ)𝐴𝑛𝑡𝑖−𝑒𝑥𝑡. 

Thus, 𝒜𝐴𝑛𝑡𝑖−𝑒𝑥𝑡 ∪ ℬ𝐴𝑛𝑡𝑖−𝑒𝑥𝑡 ⊆ (𝒜 ∩ ℬ)𝐴𝑛𝑡𝑖−𝑒𝑥𝑡 

(ix) We have 𝒜𝐴𝑛𝑡𝑖−𝑒𝑥𝑡 = (𝑐𝒜)𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 =  𝑐𝒜 since, if 𝒜 is A-C then 𝑐𝒜 is A-

O and 𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 = 𝒜 if 𝒜 is A-O. Hence the result. 

(x) Let 𝑥 ∈ 𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 ∩ 𝒜𝐴𝑛𝑡𝑖−𝑒𝑥𝑡 

⇒ 𝑥 ∈ 𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 and, 𝑥 ∈ 𝒜𝐴𝑛𝑡𝑖−𝑒𝑥𝑡 

⇒ 𝑥 ∈ 𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 and, 𝑥 ∈ (𝒸𝒜)𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 

⇒ 𝑥 ∈ 𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 ⊆ 𝒜 and, 𝑥 ∈ 𝒜𝐴𝑛𝑡𝑖−𝑒𝑥𝑡 ⊆ 𝒸𝒜 

⇒ 𝑥 ∈ 𝒜 and, 𝑥 ∈ 𝒸𝒜, which is not possible. 

Hence, 𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 ∩ 𝒜𝐴𝑛𝑡𝑖−𝑒𝑥𝑡 = ∅. 

Definition 4.2.2 

For an A-TS (𝒳, 𝒯) and  𝒜, ℬ ⊆ 𝒳 , the anti-exterior operator on the space 𝒳  is a 

function: 𝐴𝑛𝑡𝑖 − 𝑒𝑥𝑡: ℐ(𝒳) → ℐ(𝒳) such that: 

(i) 𝒜𝐴𝑛𝑡𝑖−𝑒𝑥𝑡 ⊆ 𝒸𝒜 

(ii) 𝒜𝐴𝑛𝑡𝑖−𝑒𝑥𝑡 = [𝒸(𝒜𝐴𝑛𝑡𝑖−𝑒𝑥𝑡)]
𝐴𝑛𝑡𝑖−𝑒𝑥𝑡

 

(iii) (𝒜 ∪ ℬ)𝐴𝑛𝑡𝑖−𝑒𝑥𝑡 ⊆ (𝒜𝐴𝑛𝑡𝑖−𝑒𝑥𝑡) ∩ (ℬ𝐴𝑛𝑡𝑖−𝑒𝑥𝑡) 

(iv) (𝒜 ∩ ℬ)𝐴𝑛𝑡𝑖−𝑒𝑥𝑡 ⊇ (𝒜𝐴𝑛𝑡𝑖−𝑒𝑥𝑡) ∪ (ℬ𝐴𝑛𝑡𝑖−𝑒𝑥𝑡) 

4.3 Closure in Anti-Topological Spaces 

Definition 4.3.1 

Let (𝒳, 𝒯) be an A-TS and 𝒜 ∈ 𝒯, then the complement of 𝒜, i.e., 𝑐𝒜 will be called as 

anti-closed (A-C). 
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Proposition 4.3.1 

In an ATS (𝒳, 𝒯), all of (i), (ii) and (iii) will satisfy: 

(i) The null set and the whole set will not be A-C. 

(ii) Union of members of  𝒯 will not be A-C. 

(iii) Intersection of members of  𝒯 will not be A-C. 

Definition 4.3.2 

For an A-TS (𝒳, 𝒯) and 𝒜 ⊆ 𝒳, the anti-closure of 𝒜 will be the intersection of the A-

C supersets of 𝒜 and will be denoted by 𝒜𝐴𝑛𝑡𝑖−𝑐𝑙.  

Thus, 𝒜𝐴𝑛𝑡𝑖−𝑐𝑙 =∩ {𝒞𝑖: 𝒜 ⊆ 𝒞𝑖and each 𝒞𝑖 is A-CS} 

We define: 𝒳𝐴𝑛𝑡𝑖−𝑐𝑙 = 𝒳 and ∅𝐴𝑛𝑡𝑖−𝑐𝑙 = ∅. 

Remark 4.3.1 

In an A-TS, since the null set is not A-O, so the whole set will not be A-C and as such 

while trying to find the closure of subsets of the whole set, in context, there will be 

instances that there will be no A-C supersets of many subsets. Under such 

circumstances, we have to conclude that the anti-closures of such sets do not exist. In 

general, we will assume that the anti-closure exists in order to establish results with 

respect to the anti-closure. Thus, in all the results that follow in the few propositions 

below, it has been assumed that the anti-closures exist for the subsets we have 

considered.  

Proposition 4.3.2 

For an A-TS (𝒳, 𝒯) and 𝒜 ⊆ 𝒳, if 𝒜 is A-C then 𝒜𝐴𝑛𝑡𝑖−𝑐𝑙 = 𝒜. 

Remark 4.3.2  

The converse of the above proposition is not always and can be observed from the 

following example. Let 𝒳 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒}  and 𝒯 = {{𝑎}, {𝑏}, {𝑐, 𝑑}, {𝑑, 𝑒}} , the A-C 

subsets are: {𝑏, 𝑐, 𝑑, 𝑒}, {𝑎, 𝑐, 𝑑, 𝑒}, {𝑎, 𝑏, 𝑒}, {𝑎, 𝑏, 𝑐} . Consider 𝒜 = {𝑐, 𝑑, 𝑒} , then 

𝒜𝐴𝑛𝑡𝑖−𝑐𝑙 = {𝑏, 𝑐, 𝑑, 𝑒} ∩ {𝑎, 𝑐, 𝑑, 𝑒} = {𝑐, 𝑑, 𝑒} = 𝒜. But, 𝒜 is not an A-C subset of 𝒳. 

Remark 4.3.3  

The anti-closure of a subset 𝒜of an A-TS (𝒳, 𝒯) is not the largest A-CS containing the 

set 𝒜. The counter example provided in remark 4.3.2 illustrates the fact. 
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Proposition 4.3.3 

Let (𝒳, 𝒯) be an ATS and 𝒜, ℬ ⊆ 𝒳, then the following holds: 

(i) 𝒜 ⊆ 𝒜𝐴𝑛𝑡𝑖−𝑐𝑙 

(ii) (𝒜𝐴𝑛𝑡𝑖−𝑐𝑙)𝐴𝑛𝑡𝑖−𝑐𝑙 = 𝒜𝐴𝑛𝑡𝑖−𝑐𝑙 

(iii) 𝒜 ⊆ ℬ ⇒ 𝒜𝐴𝑛𝑡𝑖−𝑐𝑙 ⊆ ℬ𝐴𝑛𝑡𝑖−𝑐𝑙 

(iv) 𝒜𝐴𝑛𝑡𝑖−𝑐𝑙 ∪ ℬ𝐴𝑛𝑡𝑖−𝑐𝑙 ⊆ (𝒜 ∪ ℬ)𝐴𝑛𝑡𝑖−𝑐𝑙  

(v) (𝒜 ∩ ℬ)𝐴𝑛𝑡𝑖−𝑐𝑙 ⊆ 𝒜𝐴𝑛𝑡𝑖−𝑐𝑙 ∩ ℬ𝐴𝑛𝑡𝑖−𝑐𝑙 

Proof:  

(i) By definition, 𝒜𝐴𝑛𝑡𝑖−𝑐𝑙 =∩ {𝒞𝑖: 𝒜 ⊆ 𝒞𝑖 and each 𝒞𝑖 is A-CS} ⊇ 𝒜. 

(ii) We have 𝒜𝐴𝑛𝑡𝑖−𝑐𝑙 =∩ {𝒞𝑖: 𝒜 ⊆ 𝒞𝑖and each 𝒞𝑖 is ACS} = ℬ (say). Here ℬ is 

the smallest superset of 𝒜.  If ℬ is A-C, then ℬ𝐴𝑛𝑡𝑖−𝑐𝑙 = ℬ by proposition 

4.3.2 and we have the result. However, if ℬ is not A-C, which is possible by 

remarks 4.3.2 and 4.3.3, then ℬ𝐴𝑛𝑡𝑖−𝑐𝑙 =∩ {ℰ: ℬ ⊆ ℰ and ℰ 𝑖𝑠 𝐴 − 𝐶𝑆} =∩

{ℱ: 𝒜 ⊆ ℱ and ℱ is 𝐴 − 𝐶𝑆} = ℬ, because ℬ is the smallest superset of 𝒜 

and there will be no other supersets other than those that are larger than ℬ 

and all of which are supersets of 𝒜. 

(iii) By (i) we have: 𝒜 ⊆ 𝒜𝐴𝑛𝑡𝑖−𝑐𝑙 and ℬ ⊆ ℬ𝐴𝑛𝑡𝑖−𝑐𝑙. 

Now, ℬ𝐴𝑛𝑡𝑖−𝑐𝑙 =∩ {𝒦: ℬ ⊆ 𝒦;  𝒦 𝑖𝑠 𝐴 − 𝐶𝑆} and 𝒜 ⊆ ℬ ⇒ 𝒜𝑁𝑡−𝑐𝑙 =∩

{ℒ: 𝒜 ⊆ ℒ, ℒ 𝑖𝑠 𝐴 − 𝐶𝑆} ⊆∩ {𝒦: ℬ ⊆ 𝒦} = ℬ𝐴𝑛𝑡𝑖−𝑐𝑙 and hence the result. 

(iv) By (iii), 𝒜 ⊆ 𝒜 ∪ ℬ ⇒ 𝒜𝐴𝑛𝑡𝑖−𝑐𝑙 ⊆ (𝒜 ∪ ℬ)𝐴𝑛𝑡𝑖−𝑐𝑙 

And ℬ ⊆ 𝒜 ∪ ℬ ⇒ ℬ𝐴𝑛𝑡𝑖−𝑐𝑙 ⊆ (𝒜 ∪ ℬ)𝐴𝑛𝑡𝑖−𝑐𝑙 

Hence 𝒜𝐴𝑛𝑡𝑖−𝑐𝑙 ∪ ℬ𝐴𝑛𝑡𝑖−𝑐𝑙 ⊆ (𝒜 ∪ ℬ)𝐴𝑛𝑡𝑖−𝑐𝑙 . 

(v) By (iii),𝒜 ∩ ℬ ⊆ 𝒜 ⇒ (𝒜 ∩ ℬ)𝐴𝑛𝑡𝑖−𝑐𝑙 ⊆ 𝒜𝐴𝑛𝑡𝑖−𝑐𝑙 

And 𝒜 ∩ ℬ ⊆ ℬ ⇒ (𝒜 ∩ ℬ)𝐴𝑛𝑡𝑖−𝑐𝑙 ⊆ ℬ𝐴𝑛𝑡𝑖−𝑐𝑙 

Hence, (𝒜 ∩ ℬ)𝐴𝑛𝑡𝑖−𝑐𝑙 ⊆ 𝒜𝐴𝑛𝑡𝑖−𝑐𝑙 ∩ ℬ𝐴𝑛𝑡𝑖−𝑐𝑙. 

Remark 4.3.4  

Equality will not hold in proposition 4.3.3 (iv), and can be seen from the example that 

follows:  

Assume that 𝒳 = {1,2,3,4,5} and 𝒯 = {{1}, {2,3}, {2,4}, {3,4}, {5}}where the A-CSs are: 

{2,3,4,5}, {1,4,5}, {1,3,5}, {1,2,5}, {1,2,3,4} . Consider 𝒜 = {1,2} and ℬ = {3} , then 
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𝒜𝐴𝑛𝑡𝑖−𝑐𝑙 = {1,2} and ℬ𝐴𝑛𝑡𝑖−𝑐𝑙 = {3} and as such 𝒜𝐴𝑛𝑡𝑖−𝑐𝑙 ∪ ℬ𝐴𝑛𝑡𝑖−𝑐𝑙 = {1,2,3}. Now, 

𝒜 ∪ ℬ = {1,2,3} and as such we have (𝒜 ∪ ℬ)𝐴𝑛𝑡𝑖−𝑐𝑙 = {1,2,3,4}.  

Hence, 𝒜𝐴𝑛𝑡𝑖−𝑐𝑙 ∪ ℬ𝐴𝑛𝑡𝑖−𝑐𝑙 ≠ (𝒜 ∪ ℬ)𝐴𝑛𝑡𝑖−𝑐𝑙.  

Definition 4.3.3 

If (𝒳, 𝒯) is an ATS, with 𝒜, ℬ ⊆ 𝒳, then the anti-closure operator on the space 𝒳 is a 

function: 𝐴𝑛𝑡𝑖 − 𝑐𝑙: ℐ(𝒳) → ℐ(𝒳) such that: 

(i) 𝒜 ⊆ 𝒜𝐴𝑛𝑡𝑖−𝑐𝑙 

(ii) 𝒜𝐴𝑛𝑡𝑖−𝑐𝑙 ∪ ℬ𝐴𝑛𝑡𝑖−𝑐𝑙 ⊆ (𝒜 ∪ ℬ)𝐴𝑛𝑡𝑖−𝑐𝑙 

(iii) (𝒜𝐴𝑛𝑡𝑖−𝑐𝑙)𝐴𝑛𝑡𝑖−𝑐𝑙 = 𝒜𝐴𝑛𝑡𝑖−𝑐𝑙 

Proposition 4.3.4 

Let (𝒳, 𝒯) be an A-TS and 𝒜 ⊆ 𝒳, the we have the following relations between the 

anti-interior and anti-closure: 

(i) 𝒸(𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡) = (𝒸𝒜)𝐴𝑛𝑡𝑖−𝑐𝑙 

(ii) (𝒸𝒜)𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 = 𝒸(𝒜𝐴𝑛𝑡𝑖−𝑐𝑙) 

(iii) 𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 = 𝒸((𝒸𝒜)𝐴𝑛𝑡𝑖−𝑐𝑙) 

(iv) 𝒸((𝒸𝒜)𝐴𝑛𝑡𝑖−𝑖𝑛𝑡) = 𝒜𝐴𝑛𝑡𝑖−𝑐𝑙. 

(v) (𝒜 ∖ ℬ)𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 = 𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 ∖ ℬ𝐴𝑛𝑡𝑖−𝑐𝑙 

(vi) (𝒜 ∖ ℬ)𝐴𝑛𝑡𝑖−𝑐𝑙 = 𝒜𝐴𝑛𝑡𝑖−𝑐𝑙 ∖ ℬ𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 

Proof:  

(i) We have: 𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 =∪ 𝒪𝑖  so that each 𝒪𝑖 is A-OS and 𝒪𝑖 ⊆ 𝒜. 

Thus, 𝒸(𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡) = 𝒸(∪ 𝒪𝑖) so that 𝒸(𝒪𝑖) ⊇ 𝒸(𝒜) 

Or, 𝒸(𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡) =∩ (𝒸𝒪𝑖) so that each 𝒸𝒪𝑖is A-CS and 𝒸(𝒜) ⊆ 𝒸(𝒪𝑖) 

Or, 𝒸(𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡) =∩ 𝒞𝑖 so that each 𝒞𝑖 is A-CS and 𝒸(𝒜) ⊆ 𝒞𝑖 

Or, 𝒸(𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡) = (𝒸𝒜)𝐴𝑛𝑡𝑖−𝑐𝑙 

(ii) We have: 𝒜𝐴𝑛𝑡𝑖−𝑐𝑙 =∩ 𝒞𝑖 so that each 𝒞𝑖 is A-CS and 𝒜 ⊆ 𝒞𝑖. 

Thus, 𝒸(𝒜𝐴𝑛𝑡𝑖−𝑐𝑙) = 𝒸(∩ 𝒞𝑖) so that 𝒸(𝒜) ⊇ 𝒸(𝒞𝑖) 

Or, 𝒸(𝒜𝐴𝑛𝑡𝑖−𝑐𝑙) =∪ (𝒸𝒞𝑖) so that each 𝒸𝒞𝑖 is A-OS and 𝒸(𝒞𝑖) ⊆ 𝒸(𝒜) 

Or, 𝒸(𝒜𝐴𝑛𝑡𝑖−𝑐𝑙) =∪ (𝒪𝑖) so that each 𝒪𝑖 is A-OS and ∪ (𝒪𝑖) ⊆ 𝒸(𝒜) 

Or, 𝒸(𝒜𝐴𝑛𝑡𝑖−𝑐𝑙) = (𝒸𝒜)𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 



10 
 

(iii) We have(𝒸𝒜)𝐴𝑛𝑡𝑖−𝑐𝑙 =∩ 𝒞𝑖, where each 𝒞𝑖 is A-CS and 𝒸𝒜 ⊆ 𝒞𝑖. 

So, 𝒸(𝒸𝒜)𝐴𝑛𝑡𝑖−𝑐𝑙 = 𝒸(∩ 𝒞𝑖) so that 𝒸(𝒸𝒜) ⊇ 𝒸𝒞𝑖 

Or, 𝒸(𝒸𝒜)𝐴𝑛𝑡𝑖−𝑐𝑙 =∪ (𝒸𝒞𝑖) so that each 𝒸𝒞𝑖 is A-OS and 𝒸𝒞𝑖 ⊆ 𝒜 

Or, 𝒸(𝒸𝒜)𝐴𝑛𝑡𝑖−𝑐𝑙 =∪ (𝒟𝑖) so that each 𝒟𝑖 is A-OS and 𝒟𝑖 ⊆ 𝒜. 

Or,  𝒸(𝒸𝒜)𝐴𝑛𝑡𝑖−𝑐𝑙 = 𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡. 

(iv) We have(𝒸𝒜)𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 =∪ ℬ𝑖 so that each ℬ𝑖 is A-OS and ℬ𝑖 ⊆ 𝒸𝒜 

So, 𝒸((𝒸𝒜)𝐴𝑛𝑡𝑖−𝑖𝑛𝑡) = 𝒸(∪ ℬ𝑖) so that each ℬ𝑖 is A-OS and ℬ𝑖 ⊆ 𝒸𝒜 

Or, 𝒸((𝒸𝒜)𝐴𝑛𝑡𝑖−𝑖𝑛𝑡) =∩ (𝒸ℬ𝑖) so that each 𝒸ℬ𝑖 is A-CS and 𝒸ℬ𝑖 ⊇ 𝒸(𝒸𝒜) 

Or, 𝒸((𝒸𝒜)𝐴𝑛𝑡𝑖−𝑖𝑛𝑡) =∩ (𝒞𝑖) so that each 𝒞𝑖 is A-CS and 𝒜 ⊆ 𝒞𝑖. 

Or, 𝒸((𝒸𝒜)𝐴𝑛𝑡𝑖−𝑖𝑛𝑡) = 𝒜𝐴𝑛𝑡𝑖−𝑐𝑙. 

(v) We have: 

𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 ∖ ℬ𝐴𝑛𝑡𝑖−𝑐𝑙 = 𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 ∩ 𝒸(ℬ𝐴𝑛𝑡𝑖−𝑐𝑙) 

     = 𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 ∩ (𝒸ℬ)𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 by (ii). 

     ⊇ (𝒜 ∩ 𝒸ℬ)𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 by proposition 4.1.2 (iv). 

                     = (𝒜 ∖ ℬ)𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 

Hence, (𝒜 ∖ ℬ)𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 ⊆ 𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 ∖ ℬ𝐴𝑛𝑡𝑖−𝑐𝑙 

Conversely, let 𝓍 ∈ 𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 ∖ ℬ𝐴𝑛𝑡𝑖−𝑐𝑙 

⇒ 𝓍 ∈ 𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 but 𝓍 ∉ ℬ𝐴𝑛𝑡𝑖−𝑐𝑙 

⇒ 𝓍 ∈ 𝒜 but 𝓍 ∉ ℬ  

⇒ 𝓍 ∈ 𝒜 ∖ ℬ 

⇒ 𝓍 ∈ (𝒜 ∖ ℬ)𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 as 𝓍 ∈ 𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 

Thus,  𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 ∖ ℬ𝐴𝑛𝑡𝑖−𝑐𝑙 ⊆ (𝒜 ∖ ℬ)𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 

Hence, (𝒜 ∖ ℬ)𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 = 𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 ∖ ℬ𝐴𝑛𝑡𝑖−𝑐𝑙 

(vi) We have(𝒜 ∖ ℬ)𝐴𝑛𝑡𝑖−𝑐𝑙 = (𝒜 ∩ 𝒸ℬ)𝐴𝑛𝑡𝑖−𝑐𝑙 

               ⊆ 𝒜𝐴𝑛𝑡𝑖−𝑐𝑙 ∩ (𝒸ℬ)𝐴𝑛𝑡𝑖−𝑐𝑙 

          = 𝒜𝐴𝑛𝑡𝑖−𝑐𝑙 ∩ 𝒸(ℬ𝐴𝑛𝑡𝑖−𝑖𝑛𝑡) by (i) 

          = 𝒜𝐴𝑛𝑡𝑖−𝑐𝑙 ∖ ℬ𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 

     Thus, (𝒜 ∖ ℬ)𝐴𝑛𝑡𝑖−𝑐𝑙 ⊆ 𝒜𝐴𝑛𝑡𝑖−𝑐𝑙 ∖ ℬ𝐴𝑛𝑡𝑖−𝑖𝑛𝑡. 

      Conversely, let 𝓍 ∈ 𝒜𝐴𝑛𝑡𝑖−𝑐𝑙 ∖ ℬ𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 

              ⇒ 𝓍 ∈ 𝒜𝐴𝑛𝑡𝑖−𝑐𝑙 but 𝓍 ∉ ℬ𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 

      ⇒ 𝓍 ∈ 𝒜𝐴𝑛𝑡𝑖−𝑐𝑙 but 𝓍 ∉ ℬ.  
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  ⇒ 𝓍 ∈ (𝒜 ∖ ℬ)𝐴𝑛𝑡𝑖−𝑐𝑙 since 𝓍 ∈ 𝒜𝐴𝑛𝑡𝑖−𝑐𝑙 

    Hence, 𝒜𝐴𝑛𝑡𝑖−𝑐𝑙 ∖ ℬ𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 ⊆ (𝒜 ∖ ℬ)𝐴𝑛𝑡𝑖−𝑐𝑙. 

Definition 4.3.4 

A proper subset 𝒜 of an A-TS (𝒳, 𝒯) is termed anti-clopen set if it is both an anti-open 

and an anti-closed set. 

Remark 4.3.5 

Remark 2.3.6 of chapter 2 states that a N-T cannot be a neutro-clopen topology because 

the whole set and the null set are not present in a N-T simultaneously. If one of the two 

is present, the other cannot be present and because of this, since they are complements 

of each other, either the whole set or the empty set will not be a neutro-clopen set even 

if the other subsets of the N-T are all neutro-clopen. However, in the A-T, since both the 

whole set and the null set are not A-O, so an A-T can be an anti-clopen topology. For 

example, we may take assume 𝒳 = {1,2,3,4}  and consider the A-T given by  𝒯 =

{{1,2}, {1,3}, {1,4}, {2,3}, {2,4}, {3,4}} which is obviously an anti-clopen topology.  

4.4 Boundary in Anti-Topological Spaces 

Definition 4.4.1 

For an A-TS (𝒳, 𝒯) and 𝒜 ⊆ 𝒳 , the anti-boundary of 𝒜 , denoted by 𝒜𝐴𝑛𝑡𝑖−𝑏𝑑 , is 

defined as  𝒜𝐴𝑛𝑡𝑖−𝑏𝑑 = 𝒜𝐴𝑛𝑡𝑖−𝑐𝑙 ∩ (𝒸𝒜)𝐴𝑛𝑡𝑖−𝑐𝑙. In other words, the anti-boundary of 

𝒜 consist of all those points that belong to the anti-closure of 𝒜 and the anti-closure of 

the complement of 𝒜. 

Remark 4.4.1 

The points that belong to the anti-boundary of 𝒜 will be the points that will be neither 

included in the anti-interior of 𝒜  nor the anti-exterior of 𝒜 . An example may be 

considered to have a clearer glimpse to the context. Let 𝒳 = {1,2,3,4} , 𝒯 =

{{1}, {2,3}, {2,4}, {3,4}} and 𝒜 = {1,2} then 𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 = {1} , 𝒜𝐴𝑛𝑡𝑖−𝑒𝑥𝑡 = {3,4}  and 

𝒜𝐴𝑛𝑡𝑖−𝑏𝑑 = {2}, as 𝒜𝐴𝑛𝑡𝑖−𝑐𝑙 = {1,2} and (𝑐𝒜)𝐴𝑛𝑡𝑖−𝑐𝑙 = {2,3,4}.    

Proposition 4.4.1 

If 𝒜 is any proper subset of an ATS (𝒳, 𝒯) then the following results are true: 

(i) 𝒜𝐴𝑛𝑡𝑖−𝑏𝑑 = 𝒸(𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 ∪ 𝒜𝐴𝑛𝑡𝑖−𝑒𝑥𝑡) 
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(ii) 𝒳 = 𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 ∪ 𝒜𝐴𝑛𝑡𝑖−𝑒𝑥𝑡 ∪ 𝒜𝐴𝑛𝑡𝑖−𝑏𝑑 

(iii) 𝒜𝐴𝑛𝑡𝑖−𝑏𝑑 = 𝒜𝐴𝑛𝑡𝑖−𝑐𝑙 ∖ 𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 

(iv) 𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 ∪ (𝒸𝒜)𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 = 𝒸(𝒜𝐴𝑛𝑡𝑖−𝑏𝑑) 

(v) 𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 = 𝒜 ∖ 𝒜𝐴𝑛𝑡𝑖−𝑏𝑑 

(vi) 𝒜𝐴𝑛𝑡𝑖−𝑐𝑙 = 𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 ∪ 𝒜𝐴𝑛𝑡𝑖−𝑏𝑑. 

Proof: 

(i) By definition, if 𝓍 ∈ 𝒜𝐴𝑛𝑡𝑖−𝑏𝑑 then 𝓍 ∉ 𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 and 𝓍 ∉ 𝒜𝐴𝑛𝑡𝑖−𝑒𝑥𝑡 

⇔ 𝓍 ∉ 𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 ∪ 𝒜𝐴𝑛𝑡𝑖−𝑒𝑥𝑡 

   ⇔ 𝓍 ∈ 𝒸(𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 ∪ 𝒜𝐴𝑛𝑡𝑖−𝑒𝑥𝑡) 

Hence, 𝒜𝐴𝑛𝑡𝑖−𝑏𝑑 = 𝒸(𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 ∪ 𝒜𝐴𝑛𝑡𝑖−𝑒𝑥𝑡) 

(ii) From (i) we have: 𝒜𝐴𝑛𝑡𝑖−𝑏𝑑 = 𝒸(𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 ∪ 𝒜𝐴𝑛𝑡𝑖−𝑒𝑥𝑡)which leads to the 

results: 𝒜𝐴𝑛𝑡𝑖−𝑏𝑑 ∩ 𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 = ∅ and 𝒜𝐴𝑛𝑡𝑖−𝑏𝑑 ∩ 𝒜𝐴𝑛𝑡𝑖−𝑒𝑥𝑡 = ∅ thereby 

leading to the conclusion that: 𝒳 = 𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 ∪ 𝒜𝐴𝑛𝑡𝑖−𝑒𝑥𝑡 ∪ 𝒜𝐴𝑛𝑡𝑖−𝑏𝑑 

(iii) From (i), we have: 

 𝒜𝐴𝑛𝑡𝑖−𝑏𝑑 = 𝒜𝐴𝑛𝑡𝑖−𝑐𝑙 ∩ (𝒸𝒜)𝐴𝑛𝑡𝑖−𝑐𝑙 

  = 𝒜𝐴𝑛𝑡𝑖−𝑐𝑙 ∖ 𝒸((𝒸𝒜)𝐴𝑛𝑡𝑖−𝑐𝑙) 

= 𝒜𝐴𝑛𝑡𝑖−𝑐𝑙 ∖ 𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡, [by proposition 4.3.4 (iii)] 

(iv) We have: 𝒸(𝒜𝐴𝑛𝑡𝑖−𝑏𝑑) = 𝒸(𝒜𝐴𝑛𝑡𝑖−𝑐𝑙 ∩ (𝒸𝒜)𝐴𝑛𝑡𝑖−𝑐𝑙) 

⇒ 𝒸(𝒜𝐴𝑛𝑡𝑖−𝑏𝑑) = 𝒸(𝒜𝐴𝑛𝑡𝑖−𝑐𝑙) ∪ 𝒸((𝒸𝒜)𝐴𝑛𝑡𝑖−𝑐𝑙) 

      ⇒ 𝒸(𝒜𝐴𝑛𝑡𝑖−𝑏𝑑) = (𝒸𝒜)𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 ∪ 𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡,  

[by proposition 4.3.4 (ii) and (iii)]  

Hence, 𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 ∪ (𝒸𝒜)𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 = 𝒸(𝒜𝐴𝑛𝑡𝑖−𝑏𝑑). 

(v) Let 𝓍 ∈ 𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 

So, 𝓍 ∈ 𝒜 but 𝓍 ∉ 𝒸𝒜 

⇒ 𝓍 ∈ 𝒜 and 𝓍 ∈  𝒜𝐴𝑛𝑡𝑖−𝑐𝑙 but 𝓍 ∉ 𝒸𝒜𝐴𝑛𝑡𝑖−𝑐𝑙 

⇒ 𝓍 ∈ 𝒜 and (𝓍 ∈  𝒜𝐴𝑛𝑡𝑖−𝑐𝑙 but 𝓍 ∉ 𝒸𝒜𝐴𝑛𝑡𝑖−𝑐𝑙) 

⇒ 𝓍 ∈ 𝒜 but 𝓍 ∉  𝒜𝐴𝑛𝑡𝑖−𝑏𝑑 

⇒ 𝓍 ∈ 𝒜 ∖ 𝒜𝐴𝑛𝑡𝑖−𝑏𝑑 

        Hence, 𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 ⊆ 𝒜 ∖ 𝒜𝐴𝑛𝑡𝑖−𝑏𝑑.  

Conversely, let 𝓍 ∈ 𝒜 ∖ 𝒜𝐴𝑛𝑡𝑖−𝑏𝑑.  
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Then 𝓍 ∈ 𝒜 but 𝓍 ∉ 𝒜𝐴𝑛𝑡𝑖−𝑏𝑑, so there will be an A-OS 𝒪𝓍 that contain 𝓍 

such that 𝒪𝓍 ∩ 𝒸𝒜 = ∅ and 𝓍 ∈ 𝒪𝓍 ⊆ 𝒜 which shows that 𝓍 ∈ 𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡.  

Thus, 𝒜 ∖ 𝒜𝐴𝑛𝑡𝑖−𝑏𝑑 ⊆ 𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡.  

Hence, we have:𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 = 𝒜 ∖ 𝒜𝐴𝑛𝑡𝑖−𝑏𝑑 

(vi) We have 𝒜𝐴𝑛𝑡𝑖−𝑐𝑙 =∩ {𝒞: 𝒞 AC with 𝒜 ⊆ 𝒞} 

Hence, 𝒸(𝒜𝐴𝑛𝑡𝑖−𝑐𝑙) = 𝒸[∩ {𝒞: 𝒞 is ACS with 𝒜 ⊆ 𝒞}] 

      =∪ {𝒸𝒞: 𝒸𝒞 is AOS with 𝒸𝒞 ⊆ 𝒸𝒜} 

      = 𝒜𝐴𝑛𝑡𝑖−𝑒𝑥𝑡 

Hence, 𝒸{𝒸(𝒜𝐴𝑛𝑡𝑖−𝑐𝑙)} = 𝑐(𝒜𝐴𝑛𝑡𝑖−𝑒𝑥𝑡) = 𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 ∪ 𝒜𝐴𝑛𝑡𝑖−𝑏𝑑, by (ii). 

Thus, 𝒜𝐴𝑛𝑡𝑖−𝑐𝑙 = 𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 ∪ 𝒜𝐴𝑛𝑡𝑖−𝑏𝑑. 

Proposition 4.4.2 

If 𝒜,ℬ are arbitrary subsets of an A-TS 𝒳 then: 

(i) ∅𝐴𝑛𝑡𝑖−𝑏𝑑 = ∅ 

(ii) 𝒜𝐴𝑛𝑡𝑖−𝑏𝑑 = (𝒸𝒜)𝐴𝑛𝑡𝑖−𝑏𝑑 

Proof: 

(i) By proposition 4.4.1 (i), we have: 𝒜𝐴𝑛𝑡𝑖−𝑏𝑑 = 𝒸(𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 ∪ 𝒜𝐴𝑛𝑡𝑖−𝑒𝑥𝑡), 

wherein replacing 𝒜 by ∅, we get: ∅𝐴𝑛𝑡𝑖−𝑏𝑑 = 𝒸(∅𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 ∪ ∅𝐴𝑛𝑡𝑖−𝑒𝑥𝑡) =

𝒸(∅ ∪ 𝒳) = 𝒸(𝒳) = ∅. 

(ii) We have: (𝒸𝒜)𝐴𝑛𝑡𝑖−𝑏𝑑 = (𝒸𝒜)𝐴𝑛𝑡𝑖−𝑐𝑙 ∩ {𝒸(𝒸𝒜)}𝐴𝑛𝑡𝑖−𝑐𝑙 = (𝒸𝒜)𝐴𝑛𝑡𝑖−𝑐𝑙 ∩

𝒜𝐴𝑛𝑡𝑖−𝑐𝑙 = 𝒜𝐴𝑛𝑡𝑖−𝑐𝑙 ∩ (𝒸𝒜)𝐴𝑛𝑡𝑖−𝑐𝑙 = 𝒜𝐴𝑛𝑡𝑖−𝑏𝑑 

Remark 4.4.2 

In an A-TS 𝒳, the boundary of 𝒜 ⊆ 𝒳 is not necessarily A-CS and can be seen from the 

example that follows: 

We may take 𝒳 = {𝑘1, 𝑘2, 𝑘3, 𝑘4, 𝑘5} with 𝒯 = {{𝑘1}, {𝑘2}, {𝑘3, 𝑘4}, {𝑘3, 𝑘5}, {𝑘4, 𝑘5}} , 

then clearly (𝒳, 𝒯)is an ATS. Let𝒜 = {𝑘1, 𝑘2, 𝑘3}, then 𝒸𝒜 = {𝑘4, 𝑘5} and 𝒜𝐴𝑛𝑡𝑖−𝑐𝑙 =

{𝑘1, 𝑘2, 𝑘3}  and (𝒸𝒜)𝐴𝑛𝑡𝑖−𝑐𝑙 = {𝑘3, 𝑘4, 𝑘5}  and so 𝒜𝐴𝑛𝑡𝑖−𝑏𝑑 = 𝒜𝐴𝑛𝑡𝑖−𝑐𝑙 ∩

(𝒸𝒜)𝐴𝑛𝑡𝑖−𝑐𝑙 = {𝑘3} which is not A-C. However, in a GTS, the boundary of a subset of a 

GTS is a closed set which has however been seen to be not true in the case of a subset of 

an A-TS.  
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Proposition 4.4.3  

If 𝒜,ℬ are arbitrary proper subsets of an A-TS 𝒳 then the following are true: 

(i) (𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡)𝐴𝑛𝑡𝑖−𝑏𝑑 ⊆ 𝒜𝐴𝑛𝑡𝑖−𝑏𝑑 

(ii) (𝒜𝐴𝑛𝑡𝑖−𝑐𝑙)𝐴𝑛𝑡𝑖−𝑏𝑑 ⊆ 𝒜𝐴𝑛𝑡𝑖−𝑏𝑑 

(iii) (𝒜 ∩ ℬ)𝐴𝑛𝑡𝑖−𝑏𝑑 ⊆ 𝒜𝐴𝑛𝑡𝑖−𝑏𝑑 ∪ ℬ𝐴𝑛𝑡𝑖−𝑏𝑑 

(iv) (𝒜 ∪ ℬ)𝐴𝑛𝑡𝑖−𝑏𝑑 ⊆ 𝒜𝐴𝑛𝑡𝑖−𝑏𝑑 ∪ ℬ𝐴𝑛𝑡𝑖−𝑏𝑑 

Proof:  

(i) On applying the definition of the anti-boundary, we have: 

(𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡)𝐴𝑛𝑡𝑖−𝑏𝑑 = (𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡)𝐴𝑛𝑡𝑖−𝑐𝑙 ∩ [{𝑐(𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡)}𝐴𝑛𝑡𝑖−𝑐𝑙]. 

= (𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡)𝐴𝑛𝑡𝑖−𝑐𝑙 ∩ [((𝒸𝒜)𝐴𝑛𝑡𝑖−𝑐𝑙)
𝐴𝑛𝑡𝑖−𝑐𝑙

], [by proposition 4.3.4 (i)] 

= (𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡)𝐴𝑛𝑡𝑖−𝑐𝑙 ∩ (𝒸𝒜)𝐴𝑛𝑡𝑖−𝑐𝑙, [by proposition 4.3.3 (ii)] 

⊆ 𝒜𝐴𝑛𝑡𝑖−𝑐𝑙 ∩ (𝒸𝒜)𝐴𝑛𝑡𝑖−𝑐𝑙, since 𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 ⊆ 𝒜 

= 𝒜𝐴𝑛𝑡𝑖−𝑏𝑑 

Hence (𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡)𝐴𝑛𝑡𝑖−𝑏𝑑 ⊆ 𝒜𝐴𝑛𝑡𝑖−𝑏𝑑. 

(ii) We have,(𝒜𝐴𝑛𝑡𝑖−𝑐𝑙)𝐴𝑛𝑡𝑖−𝑏𝑑 = (𝒜𝐴𝑛𝑡𝑖−𝑐𝑙)𝐴𝑛𝑡𝑖−𝑐𝑙 ∩ (𝒸(𝒜𝐴𝑛𝑡𝑖−𝑐𝑙))𝐴𝑛𝑡𝑖−𝑐𝑙 

= 𝒜𝐴𝑛𝑡𝑖−𝑐𝑙 ∩ (𝒸(𝒜𝐴𝑛𝑡𝑖−𝑐𝑙))𝐴𝑛𝑡𝑖−𝑐𝑙 [by proposition 4.3.3 (ii)] 

Now, 𝒜 ⊆ 𝒜𝐴𝑛𝑡𝑖−𝑐𝑙 ⇒ 𝒸(𝒜𝐴𝑛𝑡𝑖−𝑐𝑙) ⊆ 𝒸𝒜 

⇒ (𝒸(𝒜𝐴𝑛𝑡𝑖−𝑐𝑙))𝐴𝑛𝑡𝑖−𝑐𝑙 ⊆ (𝒸𝒜)𝐴𝑛𝑡𝑖−𝑐𝑙, [by proposition 4.3.3 (iii)] 

Thus, (𝒜𝐴𝑛𝑡𝑖−𝑐𝑙)𝐴𝑛𝑡𝑖−𝑏𝑑 = 𝒜𝐴𝑛𝑡𝑖−𝑐𝑙 ∩ (𝒸(𝒜𝐴𝑛𝑡𝑖−𝑐𝑙))𝐴𝑛𝑡𝑖−𝑐𝑙 

                                         ⊆ 𝒜𝐴𝑛𝑡𝑖−𝑐𝑙 ∩ (𝒸𝒜)𝐴𝑛𝑡𝑖−𝑐𝑙 = 𝒜𝐴𝑛𝑡𝑖−𝑏𝑑 

Hence, (𝒜𝐴𝑛𝑡𝑖−𝑐𝑙)𝐴𝑛𝑡𝑖−𝑏𝑑 ⊆ 𝒜𝐴𝑛𝑡𝑖−𝑏𝑑 

(iii) On applying the definition, we get: 

(𝒜 ∩ ℬ)𝐴𝑛𝑡𝑖−𝑏𝑑 = (𝒜 ∩ ℬ)𝐴𝑛𝑡𝑖−𝑐𝑙 ∩ (𝒸(𝒜 ∩ ℬ))𝐴𝑛𝑡𝑖−𝑐𝑙 

⊆ [𝒜𝐴𝑛𝑡𝑖−𝑐𝑙 ∩ ℬ𝐴𝑛𝑡𝑖−𝑐𝑙] ∩ [(𝒸𝒜 ∪ 𝒸ℬ)𝐴𝑛𝑡𝑖−𝑐𝑙] 

⊆ [𝒜𝐴𝑛𝑡𝑖−𝑐𝑙 ∩ ℬ𝐴𝑛𝑡𝑖−𝑐𝑙] ∩ [(𝒸𝒜)𝐴𝑛𝑡𝑖−𝑐𝑙 ∪ (𝒸ℬ)𝐴𝑛𝑡𝑖−𝑐𝑙] 

= [𝒜𝐴𝑛𝑡𝑖−𝑐𝑙 ∩ ℬ𝐴𝑛𝑡𝑖−𝑐𝑙 ∩ (𝒸𝒜)𝐴𝑛𝑡𝑖−𝑐𝑙] ∪ [𝒜𝐴𝑛𝑡𝑖−𝑐𝑙 ∩ ℬ𝐴𝑛𝑡𝑖−𝑐𝑙

∩ (𝒸ℬ)𝐴𝑛𝑡𝑖−𝑐𝑙] 

= [𝒜𝐴𝑛𝑡𝑖−𝑐𝑙 ∩ (𝒸𝒜)𝐴𝑛𝑡𝑖−𝑐𝑙 ∩ ℬ𝐴𝑛𝑡𝑖−𝑐𝑙] ∪ [𝒜𝐴𝑛𝑡𝑖−𝑐𝑙 ∩ ℬ𝐴𝑛𝑡𝑖−𝑐𝑙

∩ (𝒸ℬ)𝐴𝑛𝑡𝑖−𝑐𝑙] 
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= [{𝒜𝐴𝑛𝑡𝑖−𝑐𝑙 ∩ (𝒸𝒜)𝐴𝑛𝑡𝑖−𝑐𝑙} ∩ ℬ𝐴𝑛𝑡𝑖−𝑐𝑙] ∪ [𝒜𝐴𝑛𝑡𝑖−𝑐𝑙 ∩ ℬ𝐴𝑛𝑡𝑖−𝑐𝑙

∩ (𝒸ℬ)𝐴𝑛𝑡𝑖−𝑐𝑙] 

= [(𝒜)𝐴𝑛𝑡𝑖−𝑏𝑑 ∩ ℬ𝐴𝑛𝑡𝑖−𝑐𝑙] ∪ [𝒜𝐴𝑛𝑡𝑖−𝑐𝑙 ∩ ℬ𝐴𝑛𝑡𝑖−𝑏𝑑] 

⊆ (𝒜)𝐴𝑛𝑡𝑖−𝑏𝑑 ∪ ℬ𝐴𝑛𝑡𝑖−𝑏𝑑, since (𝒜)𝐴𝑛𝑡𝑖−𝑏𝑑 ∩ ℬ𝐴𝑛𝑡𝑖−𝑐𝑙 ⊆ (𝒜)𝐴𝑛𝑡𝑖−𝑏𝑑 and 

also, 𝒜𝐴𝑛𝑡𝑖−𝑐𝑙 ∩ ℬ𝐴𝑛𝑡𝑖−𝑏𝑑 ⊆ (ℬ)𝐴𝑛𝑡𝑖−𝑏𝑑 

Hence, (𝒜 ∩ ℬ)𝐴𝑛𝑡𝑖−𝑏𝑑 ⊆ 𝒜𝐴𝑛𝑡𝑖−𝑏𝑑 ∪ ℬ𝐴𝑛𝑡𝑖−𝑏𝑑. 

(iv) On applying the definition, we get: 

(𝒜 ∪ ℬ)𝐴𝑛𝑡𝑖−𝑏𝑑 = (𝒜 ∪ ℬ)𝐴𝑛𝑡𝑖−𝑐𝑙 ∩ (𝒸(𝒜 ∪ ℬ))𝐴𝑛𝑡𝑖−𝑐𝑙 

⊆ [𝒜𝐴𝑛𝑡𝑖−𝑐𝑙 ∪ ℬ𝐴𝑛𝑡𝑖−𝑐𝑙] ∩ [(𝒸𝒜)𝐴𝑛𝑡𝑖−𝑐𝑙 ∩ (𝒸ℬ)𝐴𝑛𝑡𝑖−𝑐𝑙] 

= [(𝒸𝒜)𝐴𝑛𝑡𝑖−𝑐𝑙 ∩ (𝒸ℬ)𝐴𝑛𝑡𝑖−𝑐𝑙] ∩ [𝒜𝐴𝑛𝑡𝑖−𝑐𝑙 ∪ ℬ𝐴𝑛𝑡𝑖−𝑐𝑙] 

= [(𝒸𝒜)𝐴𝑛𝑡𝑖−𝑐𝑙 ∩ (𝒸ℬ)𝐴𝑛𝑡𝑖−𝑐𝑙 ∩ 𝒜𝐴𝑛𝑡𝑖−𝑐𝑙] ∪ [(𝒸𝒜)𝐴𝑛𝑡𝑖−𝑐𝑙 ∩ (𝒸ℬ)𝐴𝑛𝑡𝑖−𝑐𝑙

∩ ℬ𝐴𝑛𝑡𝑖−𝑐𝑙] 

= [{(𝒸𝒜)𝐴𝑛𝑡𝑖−𝑐𝑙 ∩ 𝒜𝐴𝑛𝑡𝑖−𝑐𝑙} ∩ (𝒸ℬ)𝐴𝑛𝑡𝑖−𝑐𝑙] ∪ [(𝒸𝒜)𝐴𝑛𝑡𝑖−𝑐𝑙 ∩ {(𝒸ℬ)𝐴𝑛𝑡𝑖−𝑐𝑙

∩ ℬ𝐴𝑛𝑡𝑖−𝑐𝑙}] 

= [𝒜𝐴𝑛𝑡𝑖−𝑏𝑑 ∩ (𝒸ℬ)𝐴𝑛𝑡𝑖−𝑐𝑙] ∪ [(𝒸𝒜)𝐴𝑛𝑡𝑖−𝑐𝑙 ∩ ℬ𝐴𝑛𝑡𝑖−𝑏𝑑] 

⊆ 𝒜𝐴𝑛𝑡𝑖−𝑏𝑑 ∪ ℬ𝐴𝑛𝑡𝑖−𝑏𝑑, since 𝒜𝐴𝑛𝑡𝑖−𝑏𝑑 ∩ (𝒸ℬ)𝐴𝑛𝑡𝑖−𝑐𝑙 ⊆ 𝒜𝐴𝑛𝑡𝑖−𝑏𝑑 and 

(𝒸𝒜)𝐴𝑛𝑡𝑖−𝑐𝑙 ∩ ℬ𝐴𝑛𝑡𝑖−𝑏𝑑 ⊆ ℬ𝐴𝑛𝑡𝑖−𝑏𝑑. 

Hence, (𝒜 ∪ ℬ)𝐴𝑛𝑡𝑖−𝑏𝑑 ⊆ 𝒜𝐴𝑛𝑡𝑖−𝑏𝑑 ∪ ℬ𝐴𝑛𝑡𝑖−𝑏𝑑. 

Remark 4.4.3 

That the equality does not hold in (i), (ii) of proposition 4.4.3, can be illustrated as 

follows: 

(i) For the inequality in proposition 4.4.3 (i), let us consider 𝒳 =

{𝑙1, 𝑙2, 𝑙3, 𝑙4, 𝑙5}  and 𝒯 = {{𝑙1}, {𝑙2}, {𝑙3, 𝑙4}, {𝑙3, 𝑙5}, {𝑙4, 𝑙5}} , clearly (𝒳, 𝒯) is 

an A-TS. Here the A-CS are: {𝑙2, 𝑙3, 𝑙4, 𝑙5} , 

{𝑙1, 𝑙3, 𝑙4, 𝑙5}, {𝑙1, 𝑙2, 𝑙5}, {𝑙1, 𝑙2, 𝑙4}, {𝑙1, 𝑙2, 𝑙3}. Let 𝒜 = {𝑙1, 𝑙2, 𝑙3}, then 𝒸𝒜 =

{𝑙4, 𝑙5} , 𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 = {𝑙1, 𝑙2} , 𝒜𝐴𝑛𝑡𝑖−𝑐𝑙 = {𝑙1, 𝑙2, 𝑙3} , (𝒸𝒜)𝐴𝑛𝑡𝑖−𝑐𝑙 =

{𝑙3, 𝑙4, 𝑙5}  and so 𝒜𝐴𝑛𝑡𝑖−𝑏𝑑 = {𝑙1, 𝑙2, 𝑙3} ∩ {𝑙3, 𝑙4, 𝑙5} = {𝑙3} . 

Also, (𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡)𝐴𝑛𝑡𝑖−𝑐𝑙 = {𝑙1, 𝑙2}𝐴𝑛𝑡𝑖−𝑐𝑙 = {𝑙1, 𝑙2}  and 

(𝒸(𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡))𝐴𝑛𝑡𝑖−𝑐𝑙 = {𝑙3, 𝑙4, 𝑙5}𝐴𝑛𝑡𝑖−𝑐𝑙 = {𝑙3, 𝑙4, 𝑙5} . 

So, (𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡)𝐴𝑛𝑡𝑖−𝑏𝑑 = ∅ . Thus,  ∅ = (𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡)𝐴𝑛𝑡𝑖−𝑏𝑑 ≠ 𝒜𝐴𝑛𝑡𝑖−𝑏𝑑 =

{𝑙3} 
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(ii) For the inequality in proposition 4.4.3 (ii), let us take  𝒳 = {𝑙1, 𝑙2, 𝑙3, 𝑙4, 𝑙5} 

and 𝒯 = {{𝑙1}, {𝑙4}, {𝑙2, 𝑙3}, {𝑙2, 𝑙5}, {𝑙3, 𝑙5}}, clearly (𝒳, 𝒯) is an A-TS. Here 

the A-CS are: {𝑙2, 𝑙3, 𝑙4, 𝑙5}, {𝑙1, 𝑙2, 𝑙3, 𝑙5}, {𝑙1, 𝑙4, 𝑙5}, {𝑙1, 𝑙3, 𝑙4}, {𝑙1, 𝑙2, 𝑙4} . 

Let  𝒜 = {𝑙1, 𝑙2, 𝑙3} , then 𝒸𝒜 = {𝑙4, 𝑙5} , and 𝒜𝐴𝑛𝑡𝑖−𝑐𝑙 = {𝑙1, 𝑙2, 𝑙3, 𝑙5} , 

(𝒸𝒜)𝐴𝑛𝑡𝑖−𝑐𝑙 = {𝑙4, 𝑙5}, 𝒜𝐴𝑛𝑡𝑖−𝑏𝑑 = {𝑙5}.  

Now, (𝒜𝐴𝑛𝑡𝑖−𝑐𝑙)𝐴𝑛𝑡𝑖−𝑐𝑙 = {𝑙1, 𝑙2, 𝑙3, 𝑙5} and (𝒸(𝒜𝐴𝑛𝑡𝑖−𝑐𝑙))𝐴𝑛𝑡𝑖−𝑐𝑙 =

({𝑙4})𝐴𝑛𝑡𝑖−𝑐𝑙 = {𝑙4} and so, (𝒜𝐴𝑛𝑡𝑖−𝑐𝑙)𝐴𝑛𝑡𝑖−𝑏𝑑 = (𝒜𝐴𝑛𝑡𝑖−𝑐𝑙)𝐴𝑛𝑡𝑖−𝑐𝑙 ∩

(𝒸(𝒜𝐴𝑛𝑡𝑖−𝑐𝑙))𝐴𝑛𝑡𝑖−𝑐𝑙 = {𝑙1, 𝑙2, 𝑙3, 𝑙5} ∩ {𝑙4} = ∅.  

Thus, we have: ∅ = (𝒜𝐴𝑛𝑡𝑖−𝑐𝑙)𝐴𝑛𝑡𝑖−𝑏𝑑 ≠ 𝒜𝐴𝑛𝑡𝑖−𝑏𝑑 = {𝑙5}.    

4.5 Relative Topology of an Anti-Topological Space 

Definition 4.5.1 

For an A-TS (𝒳, 𝒯) and 𝒜 ⊆ 𝒳, we define the relative anti-topology 𝒯𝒜  for 𝒜 to be 

the collection given by: 𝒯𝒜 = {ℬ ∩ 𝒜: ℬ ∈ 𝒯}. The A-TS (𝒜, 𝒯𝒜) is called a sub-space 

of the A-TS (𝒳, 𝒯) and the A-T 𝒯𝒜 is said to be induced by 𝒯.   

Example 4.5.1 

Suppose 𝒳 = {1,2,3,4,5} , then 𝒯 = {{1,2}, {1,3}, {1,4}, {1,5}, {2,5}, {3,4}, {3,5}, {4,5}} 

is an A-T on 𝒳. If 𝒜 = {1,3,4} then 𝒯𝒜 = {{1,3}, {1,4}, {3,4}} is the relative A-T. 

Proposition 4.5.1 

Suppose (𝒴, 𝒯𝒴) is a sub-space of an A-TS (𝒳, 𝒯𝒳), then the results that follow are true: 

(i) 𝒜 ⊆ 𝒴 is A-C in 𝒴 if and only if there is an A-CS  𝒞 in 𝒳 so that 𝒜 = 𝒞 ∩

𝒴. 

(ii) For every 𝒜 ⊆ 𝒴 , 𝒜𝒴
𝐴𝑛𝑡𝑖−𝑐𝑙 = 𝒜𝒳

𝐴𝑛𝑡𝑖−𝑐𝑙 ∩ 𝒴 , where 𝒜𝒳
𝐴𝑛𝑡𝑖−𝑐𝑙 is the Anti-

closure of 𝒜 in 𝒳. 

(iii) A subset 𝒫 of 𝒴 will be a 𝒯𝒴 -anti-nhd of a point 𝑦 ∈ 𝒴 iff 𝒫 = 𝒬 ∩ 𝒴  for 

some 𝒯𝒳-anti-nhd 𝒬 of 𝑦. 

(iv) For every 𝒜 ⊆ 𝒴, 𝒜𝒳
𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 ⊆ 𝒜𝒴

𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 

Proof: 

(i) Let 𝒜 be A-C in 𝒴 

⇔ 𝒸𝒜 is A-O in 𝒴 

⇔ 𝒸𝒜 = ℬ ∩ 𝒴, ℬ is A-O in 𝒳 
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⇔ 𝒜 = 𝒸(ℬ ∩ 𝒴) 

⇔ 𝒜 = 𝒸(ℬ) ∪ c(𝒴), De-Morgan’s law 

⇔ 𝒜 = 𝒸(ℬ) ∪ ∅, since 𝒸(𝒴) = ∅ ⇔ 𝒜 = 𝒸(ℬ) = 𝒴 ∖ ℬ 

⇔ 𝒜 = 𝒴 ∩ 𝒸ℬ 

⇔ 𝒜 = 𝒴 ∩ 𝒞, where 𝒞 = 𝒸ℬ is A-C in 𝒳. 

(ii) By definition: 𝒜𝒴
𝐴𝑛𝑡𝑖−𝑐𝑙 =∩ {𝒟: 𝒟 is A-CS in 𝒴 and 𝒜 ⊆ 𝒟} 

   =∩ {𝒞 ∩ 𝒴: 𝒞 is A-CS in 𝒳 and 𝒜 ⊆ 𝒞 ∩ 𝒴}, by (i)   

   =∩ {𝒞 ∩ 𝒴: 𝒞 is A-CS in 𝒳 and 𝒜 ⊆ 𝒞} 

   = [∩ {𝒞: 𝒞 is A-CS in 𝒳 and 𝒜 ⊆ 𝒞}] ∩ 𝒴 

  = 𝒜𝒳
𝐴𝑛𝑡𝑖−𝑐𝑙 ∩ 𝒴, where 𝒜𝒳

𝐴𝑛𝑡𝑖−𝑐𝑙is the anti-closure of 𝒜 in 𝒳. 

(iii) Let us assume 𝒫 to be a 𝒯𝒴-anti-nhd of a point 𝑦 in 𝒴. Then a 𝒯𝒴-A-OS set 

𝒦  will be there so that 𝑦 ∈ 𝒦 ⊆ 𝒫 . Thus, for a 𝒯𝒳 -A-OS ℐ  we have: 𝑦 ∈

𝒦 = 𝒥 ∩ 𝒴 ⊆ 𝒫. Now, if we assume 𝒬 = 𝒫 ∪ 𝒥, then 𝒬 is a 𝒯𝒴-anti-nhd of 

𝑦 since ℐ is a 𝒯𝒳-AOS such that y ∈ 𝒥 ⊆ 𝒬.  

Further, 𝒬 ∩ 𝒴 = (𝒫 ∪ 𝒥) ∩ 𝒴 = (𝒫 ∩ 𝒴) ∪ (𝒥 ∩ 𝒴) = 𝒫 ∪ (𝒥 ∩ 𝒴) = 𝒫 , 

since 𝒥 ∩ 𝒴 ⊆ 𝒫. 

Conversely, if 𝒫 = 𝒬 ∩ 𝒴 for some 𝒯𝒴-anti-nhd 𝒬 of 𝑦. Then there exists a 

𝒥 ∈ 𝒯𝒳 so that 𝑦 ∈ 𝒥 ⊆ 𝒬 which means 𝑦 ∈ 𝒥 ∩ 𝒴 ⊆ 𝒬 ∩ 𝒴 = 𝒫. And since 

𝒥 ∩ 𝒴 ∈ 𝒯𝒴, so 𝒫is a 𝒯𝒴-anti-nhd of the point 𝑦.   

(iv)  We have 𝑥 ∈ 𝒜𝒳
𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 ⇒ 𝑥 is a 𝒯𝒳-interior point of 𝒜 ⇒  𝒜 is a 𝒯𝒳-anti-

nhd of 𝑥 ⇒  𝒜 ∩ 𝒴  is a 𝒯𝒴 -anti-nhd of 𝑥 ⇒  𝒜 ⊆ 𝒴 ⇒ 𝑥 ∈ 𝒜𝒴
𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 and 

hence we must have 𝒜𝒳
𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 ⊆ 𝒜𝒴

𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 

 

 

 


