CHAPTER 5 # Continuity of Functions in Neutro-Topological Spaces and Anti-Topological Spaces In the current chapter the aspect of continuity of functions is introduced in neutro-topological space (N-TS) with the help of neutro-neighborhoods (Nu-nhd) and N-OSs and continuity properties are analyzed in different types of functions. Further, taking advantage of the fact that a N-TS can be obtained from every GTS, the concept of weakly neutro-continuity is introduced and some of the properties of such a form of continuity are also analyzed. Further, neutro-homeomorphism is also introduced with the help of weakly neutro-continuity of function and some classical properties are analyzed. The concept of continuity of functions in A-TSs has been defined via A-OS. Moreover, the concept of weak continuity could not be extended to the study in A-TSs. ## 5.1 Continuity in Neutro-Topological Spaces #### **Definition 5.1.1** For two N-TSs (X, \mathcal{T}_1) , (Y, \mathcal{T}_2) , a map f defined between \mathcal{T}_1 and \mathcal{T}_2 will be Nucontinuous at a member x of X iff for all \mathcal{T}_2 -Nu-nhd Q of f(x) there is a \mathcal{T}_1 -Nu-nhd Q of the member x so that $f(Q) \subseteq Q$. #### **Proposition 5.1.1** For two N-TSs (X, T_1) and (Y, T_2) , a mapping f defined between T_1 and T_2 will be Nucontinuous iff for each $O \in T_2$, $f^{-1}(O) \in T_1$.. #### **Definition 5.1.2** For two GTSs (X, T_1) and (Y, T_2) , the structures $(X, T_1 \setminus \psi)$ and $(Y, T_2 \setminus \psi)$ where ψ may be \emptyset or X, are N-TSs. A function which is continuous with respect to these N-Ts will be called weakly Nu-continuous. Some of the results discussed in this chapter have been published in: Basumatary B., & Khaklary J.K. (2024). A Study on Continuity functions in neutro-topological spaces. *Neutrosophic Sets and Systems*, **78**, 341-352. ## **Remark 5.1.1** We denote the topologies $\mathcal{T}_1 \setminus \psi$ and $\mathcal{T}_2 \setminus \psi$ with the symbol $\mathcal{T}_1 \setminus \psi$ wherever necessary. That is, $\mathcal{T}_1 \setminus \psi$ will denote $\mathcal{T}_1 \setminus \psi$ or $\mathcal{T}_2 \setminus \psi$ with $\psi = \emptyset$, or \mathcal{X} . It may be observed that in the N- $TS(\mathcal{X}, \mathcal{T})$, the union or the intersection of N-OS are N-O. If a function is weakly Nucontinuous then the properties of union or the intersection of the N-OS in the N-TS is preserved in the resulting N-T from the parent topology from which the whole set or the null set is excluded. Moreover, once a function is termed weakly Nu-continuous, properties of closure and interior will also be preserved. While dealing with closure properties, it may be assumed that the N-T that is in use is $\mathcal{T}_1 \setminus \emptyset$ and $\mathcal{T}_2 \setminus \emptyset$ and while dealing with interior properties, it might be assumed that the N-Ts $\mathcal{T}_1 \setminus \mathcal{X}$ and $\mathcal{T}_2 \setminus \mathcal{X}$ are in use. #### **Proposition 5.1.2** If a map is Nu-continuous then it is also weakly Nu-continuous. #### Proof: If ζ , a map between \mathcal{T}_1 and \mathcal{T}_2 is Nu-continuous, then if $\mathcal{W} \in \mathcal{T}_2$ then $f^{-1}(\mathcal{W}) \in \mathcal{T}_1$. That is, if \mathcal{W} is \mathcal{T}_2 -N-O then $f^{-1}(\mathcal{W})$ is \mathcal{T}_1 -N-O. Since in a N-TS, the null set or the whole set do not simultaneously belong to the N-T and also in the N-TS $(\mathcal{X}, \mathcal{C})$, the null set or the whole set are excluded and as such every \mathcal{T}_2 -N-OS will be \mathcal{C} -N-O and every \mathcal{T}_1 -N-OS will be \mathcal{C} -N-O and thus the map f between $(\mathcal{X}, \mathcal{C})$ and $(\mathcal{Y}, \mathcal{C})$ will be Nucontinuous. Thus f is weakly Nu-continuous. #### **Remark 5.1.2** **Proposition 5.1.2** is not always true the other way around because a *N-TS* may be obtainable from a *GTS* by the exclusion of the null set or the whole set but the same is not the case the other way around. That is, we cannot obtain a *GTS* by including the null set or the whole set to any random *N-TS*. For a function to be weakly Nu-continuous, all the properties of continuity of the function in a *GTS* are intact, except for the exclusion of the null set or the whole set from the *GTSs* in context. However, in other *N-TSs*, where union or intersections of members are not members of a *N-T*, the properties of weakly continuity will fail and hence the converse part will fail in general. ## **Proposition 5.1.3** If a map is continuous then it is also weakly Nu-continuous. ## **Proof:** Let f be a map between \mathcal{T}_1 and \mathcal{T}_2 . If f is continuous, then for each $\mathcal{W} \in \mathcal{T}_2$, $f^{-1}(\mathcal{W}) \in \mathcal{T}_1$. Thus, $f^{-1}(\mathcal{X}) \in \mathcal{T}_1$ and $f^{-1}(\emptyset) \in \mathcal{T}_1$. Now, the map f maps $(\mathcal{X}, \mathcal{C})$ to $(\mathcal{Y}, \mathcal{C})$ in such a manner that either \emptyset or \mathcal{X} are excluded from the two topologies \mathcal{T}_1 and \mathcal{T}_2 . However, the other open sets of the two topologies are intact in \mathcal{T}_1 and \mathcal{T}_2 . Hence, the property of continuity of the map f between \mathcal{T}_1 and \mathcal{T}_2 , is carried over to the map f between $(\mathcal{X}, \mathcal{C})$ and $(\mathcal{Y}, \mathcal{C})$ and hence f becomes weakly Nu-continuous. ## **Remark 5.1.3** The converse of *Proposition 5.1.3* is not always true. If f that maps a $GTS(\mathcal{X}, \mathcal{T}_1)$ to another $GTS(\mathcal{Y}, \mathcal{T}_2)$ is continuous then $f^{-1}(\mathcal{X}) \in \mathcal{T}_1$ but if we consider the N- $Ts(\mathcal{T}_1 \setminus \mathcal{X})$ and $\mathcal{T}_2 \setminus \mathcal{X}$ for weakly Nu-continuity then we do not need to worry whether $f^{-1}(\mathcal{X}) \in \mathcal{T}_1$ or not, as \mathcal{X} itself being excluded there will no image of \mathcal{X} in \mathcal{T}_2 and as such the map will be weakly Nu-continuous. However, the map will not be continuous because $f^{-1}(\mathcal{X}) \notin \mathcal{T}_1$ as the image of \mathcal{X} will not be there in \mathcal{T}_2 . ## **Proposition 5.1.4** For two N-TSs (X, T_1) , (Y, T_2) , the map f between T_1 and T_2 will be weakly Nucontinuous iff for every V, a T_2 -N-CS, $f^{-1}(V)$ is T_1 -N-C. ## **Proof:** If the map f between \mathcal{T}_1 and \mathcal{T}_2 is weakly Nu-continuous and \mathcal{V} be any \mathcal{T}_2 -N-CS then $c\mathcal{V}(=\mathcal{Y}\setminus\mathcal{V})$ will be \mathcal{T}_2 -N-O and f being weakly Nu-continuous, $f^{-1}(\mathcal{Y}\setminus\mathcal{V})$ will be \mathcal{T}_1 -N-O. Now, $f^{-1}(\mathcal{Y} \setminus \mathcal{V}) = \mathcal{X} \setminus f^{-1}(\mathcal{V})$, which is \mathcal{T}_1 -N-O and hence $f^{-1}(\mathcal{V})$ is \mathcal{T}_1 -N-C. Conversely, for $f^{-1}(\mathcal{V})$ is \mathcal{T}_1 -N-C for every \mathcal{V} that are N-C in \mathcal{T}_2 , then for any \mathcal{W} , which is \mathcal{T}_2 -N-O, $\mathcal{Y} \setminus \mathcal{W}$ will be \mathcal{T}_2 -N-C and as such $f^{-1}(\mathcal{Y} \setminus \mathcal{W})$ is \mathcal{T}_1 -N-C. Now, $f^{-1}(\mathcal{Y} \setminus \mathcal{W}) = \mathcal{X} \setminus f^{-1}(\mathcal{W})$ will be \mathcal{T}_1 -N-C, thereby showing that $f^{-1}(\mathcal{W})$ is \mathcal{T}_1 -N-O. Hence, as per *proposition 5.1.1*, f is weakly Nu-continuous. #### **Proposition 5.1.5** For two N-TS (X, T_1) and (Y, T_2) , the map f from T_1 to T_2 will be Nu-continuous iff for any $x \in X$, the pre-image of all T_2 -Nu-nhd of f(x) will be T_1 -Nu-nhd of x. We assume the map f to be Nu-continuous, and $x \in \mathcal{X}$ and \mathcal{N} be a random \mathcal{T}_2 -Nu-nhd of f(x). Then the definition of Nu-nhd says that there is a $\mathcal{V} \in \mathcal{T}_2$ so that $f(x) \in \mathcal{V} \subseteq \mathcal{W}$ which gives $x \in f^{-1}(\mathcal{V}) \subseteq f^{-1}(\mathcal{W})$. Now, f being Nu-continuous so $f^{-1}(\mathcal{W}) \in \mathcal{T}_1$ and since $x \in f^{-1}(\mathcal{V}) \subseteq f^{-1}(\mathcal{W})$ it means that $f^{-1}(\mathcal{W})$ is a \mathcal{T}_1 -Nu-nhd of x. Conversely, let $f^{-1}(W)$ be a \mathcal{T}_1 -Nu-nhd of x for every \mathcal{T}_2 -Nu-nhd W of f(x), then if $U \in \mathcal{T}_2$ will lead to $x \in f^{-1}(U)$ so that $f(x) \in U$. Now, since $U \in \mathcal{T}_2$, it is a \mathcal{T}_2 -Nu-nhd of f(x) and hence by the condition $f^{-1}(U)$ is a \mathcal{T}_1 -Nu-nhd of x and hence $f^{-1}(U) \in \mathcal{T}_1$ and hence by *proposition 5.1.1*, f is Nu-continuous. ## **Proposition 5.1.6** For two N-TS (X, T_1) and (Y, T_2) , the map f from T_1 to T_2 will be weakly Nucontinuous iff the pre-image of each member of a Nu-sub-base of Y is N-O in T_1 . #### **Proof:** Let f be weakly Nu-continuous with \mathcal{B}^s being a Nu-sub-base for \mathcal{Y} and let $Q \in \mathcal{T}_2$. Since each member of \mathcal{B}^s is N-O in \mathcal{T}_2 , so by **proposition 5.1.1** it can be concluded that $f^{-1}(Q)$ is N-O in \mathcal{T}_1 for every $Q \in \mathcal{B}^s$. Conversely, let $f^{-1}(Q)$ be N-O in \mathcal{T}_1 for every $Q \in \mathcal{B}^s$, and if \mathcal{P} is any N-OS in \mathcal{T}_2 and \mathcal{B} is a class of all finite intersections of components of \mathcal{B}^s so that \mathcal{B} forms a Nu-base for \mathcal{Y} then if $B \in \mathcal{B}$, then there exists finite number of $Q_1, Q_2, Q_3, ..., Q_n$ in \mathcal{B}^s so that $B = Q_1 \cap Q_2 \cap ... \cap Q_n$. Then $f^{-1}(B) = f^{-1}(Q_1) \cap f^{-1}(Q_2) \cap ... \cap f^{-1}(Q_n)$. Now, each $f^{-1}(Q_i) \in \mathcal{T}_1$ so $f^{-1}(B) \in \mathcal{T}_1$. Also, since \mathcal{B} is a Nu-base for \mathcal{Y} , $\mathcal{P} = \cup \{B: B \in \mathcal{B}; B \subseteq \mathcal{P}\}$. Then $f^{-1}(\mathcal{P}) = f^{-1}[\cup \{B: B \in \mathcal{B}; B \subseteq \mathcal{P}\}] = \cup [f^{-1}(B): B \in \mathcal{B}; B \subseteq \mathcal{P}]$ which is *N-O* in \mathcal{T}_1 since each $f^{-1}(B) \in \mathcal{T}_1$. Thus $f^{-1}(\mathcal{P}) \in \mathcal{T}_1$ for each *N-OS* \mathcal{P} in \mathcal{T}_2 . Hence as per *propositions 5.1.1* the function f is weakly Nu-continuous. ## **Remark 5.1.4** In *proposition 5.1.6* the map f will not be Nu-continuous because in a N-TS, the union of members of the Nu-base may not be N-O. #### **Proposition 5.1.7** For two N-TSs (X, T_1) and (Y, T_2) , a function f from T_1 to T_2 is weakly Nu-continuous iff the pre-image of every class of a Nu-base for Y is N-O in T_1 . #### **Proof:** Assume f to be weakly Nu-continuous, and assume B to be any member of a Nu-base \mathcal{B} for \mathcal{Y} . Now, B is N-O in \mathcal{T}_2 since $B \in \mathcal{B} \subseteq \mathcal{T}_2$ and hence by **proposition 5.1.1**, $f^{-1}(B) \in \mathcal{T}_1$. Conversely, let $f^{-1}(B)$ is N-O member of \mathcal{T}_1 for any $B \in \mathcal{B}$ and assume \mathcal{O} to be any N-OS in \mathcal{T}_2 , then \mathcal{O} can be described as: $\mathcal{O} = \bigcup \{B : B \in \mathcal{B}; B \subseteq \mathcal{O}\}$. Hence $f^{-1}(\mathcal{O}) = f^{-1}[\cup \{B: B \in \mathcal{B}; B \subseteq \mathcal{O}\}] = \cup [f^{-1}(B): B \in \mathcal{B}; B \subseteq \mathcal{O}]$ which is *N-O* since each $f^{-1}(B)$ is *N-O*. Hence as per *proposition 5.1.1*, f is weakly Nu-continuous. ## **Remark 5.1.5** In *proposition 5.1.7*, f will not be Nu-continuous because in a N-TS, the union of members of the Nu-base may not be N-O. #### **Proposition 5.1.8** For two N-TSs $(\mathcal{X}, \mathcal{T}_1)$ and $(\mathcal{Y}, \mathcal{T}_2)$, a function f from \mathcal{T}_1 to \mathcal{T}_2 is weakly Nu-continuous iff $(f^{-1}(\mathcal{B}))^{Nu-cl} \subseteq f^{-1}(\mathcal{B}^{Nu-cl})$ for any subset \mathcal{B} of \mathcal{Y} . #### **Proof:** Assume f to be weakly Nu-continuous, then \mathcal{B}^{Nu-cl} is N-C with respect to \mathcal{T}_2 and so by **proposition** 5.1.4, $f^{-1}(\mathcal{B}^{Nu-cl})$ is N-C with respect to \mathcal{T}_1 and hence $[f^{-1}(\mathcal{B}^{Nu-cl})]^{Nu-cl} = f^{-1}(\mathcal{B}^{Nu-cl})$. Now, $$\mathcal{B} \subseteq \mathcal{B}^{Nu-cl}$$ and so, $f^{-1}[\mathcal{B}] \subseteq f^{-1}[\mathcal{B}^{Nu-cl}]$ $$\Rightarrow [f^{-1}(\mathcal{B})]^{Nu-cl} \subseteq [f^{-1}(\mathcal{B}^{Nu-cl})]^{Nu-cl}$$, [by *proposition 2.3.3 (iii)*] But $$[f^{-1}(\mathcal{B}^{Nu-cl})]^{Nu-cl} = f^{-1}(\mathcal{B}^{Nu-cl})$$, so $(f^{-1}(\mathcal{B}))^{Nu-cl} \subseteq f^{-1}(\mathcal{B}^{Nu-cl})$. Conversely, let the condition be true. Now, if \mathcal{C} be any N-CS in \mathcal{Y} then $\mathcal{C}^{Nu-cl} = \mathcal{C}$. Now, by condition $$(f^{-1}(\mathcal{C}))^{Nu-cl} \subseteq f^{-1}(\mathcal{C}^{Nu-cl}) = f^{-1}(\mathcal{C})$$ That is, $$(f^{-1}(\mathcal{C}))^{Nu-cl} \subseteq f^{-1}(\mathcal{C})$$. But, $$f^{-1}(\mathcal{C}) \subseteq (f^{-1}(\mathcal{C}))^{Nu-cl}$$, [by *proposition 2.3.3 (i)*] Hence $(f^{-1}(\mathcal{C}))^{Nu-cl} = f^{-1}(\mathcal{C})$, thus showing that $f^{-1}(\mathcal{C})$ is N-C in \mathcal{T}_1 and hence by **proposition 5.1.4**, the function f is weakly Nu-continuous. #### **Remark 5.1.6** In *proposition 5.1.8*, the function f will not be Nu-continuous because in a N-TS, the Nu-closure of a set is not necessarily a N-CS [by remark 2.3.1]. ## **Proposition 5.1.9** For two N-TS (X, T_1) and (Y, T_2) , a map f from T_1 to T_2 is weakly Nu-continuous iff $f(C^{Nu-cl}) \subseteq [f(C)]^{Nu-cl}$ for each subset C of X. ## **Proof**: Let f be weakly Nu-continuous and $\mathcal{C} \subseteq \mathcal{X}$ and let $f(\mathcal{C}) = \mathcal{B} \subseteq \mathcal{Y}$. Then by **proposition 5.1.8** we have $(f^{-1}(\mathcal{B}))^{Nu-cl} \subseteq f^{-1}(\mathcal{B}^{Nu-cl})$ $$\Rightarrow [f^{-1}(f(\mathcal{C}))]^{Nu-cl} \subseteq f^{-1}[f(\mathcal{C}))^{Nu-cl}]$$ $$\Rightarrow f^{-1}(f(\mathcal{C}^{Nu-cl})) \subseteq f^{-1}[(f(\mathcal{C}))^{Nu-cl}], \, since \, f(\mathcal{C}) \subseteq f(\mathcal{C}^{Nu-cl})$$ Thus, $$f(\mathcal{C}^{Nu-cl}) \subseteq [f(\mathcal{C})]^{Nu-cl}$$ Conversely, let the condition be true and assume that \mathcal{B} is some arbitrary N-CS set in \mathcal{Y} , then $f^{-1}(\mathcal{B}) \subseteq \mathcal{X}$. Now, by the condition, $f((f^{-1}(\mathcal{B}))^{Nu-cl}) \subseteq [f(f^{-1}(\mathcal{B}))]^{Nu-cl}$ $$\Rightarrow f((f^{-1}(\mathcal{B}))^{Nu-cl}) \subseteq f(f^{-1}(\mathcal{B}^{Nu-cl}))$$ $$\Rightarrow (f^{-1}(\mathcal{B}))^{Nu-cl} \subseteq f^{-1}(\mathcal{B}), \text{ since } \mathcal{B} \text{ is } N\text{-}CS$$ But, $$f^{-1}(\mathcal{B}) \subseteq (f^{-1}(\mathcal{B}))^{Nu-cl}$$, [by **proposition 2.3.3** (i)] Hence, we get $(f^{-1}(\mathcal{B}))^{Nu-cl} = f^{-1}(\mathcal{B})$ thereby showing $f^{-1}(\mathcal{B})$ is N-C in \mathcal{T}_1 and hence by **proposition 5.1.4**, f is weakly Nu-continuous. ## **Remark 5.1.7** In *proposition 5.1.9*, f will not be Nu-continuous because the Nu-closure of a set being equal to the set does not always mean that the set is N-C [by *remark 2.3.1*]. ## **Proposition 5.1.10** For two N-TS (X, T_1) and (Y, T_2) , a map f from T_1 to T_2 is weakly Nu-continuous iff $f^{-1}(A^{Nu-int}) \subseteq [f^{-1}(A)]^{Nu-int}$ for any subset A of Y. #### **Proof:** Let f be weakly Nu-continuous. Now since \mathcal{A}^{Nu-int} is N-O in \mathcal{Y} so by **proposition** 5.1.1, $f^{-1}(\mathcal{A}^{Nu-int})$ is N-O in \mathcal{X} and so $[f^{-1}(\mathcal{A}^{Nu-int})]^{Nu-int} = f^{-1}(\mathcal{A}^{Nu-int})$. Now, $\mathcal{A}^{Nu-int} \subseteq \mathcal{A} \Rightarrow f^{-1}(\mathcal{A}^{Nu-int}) \subseteq f^{-1}(\mathcal{A})$ $\Rightarrow [f^{-1}(\mathcal{A}^{Nu-int})]^{Nu-int} \subseteq [f^{-1}(\mathcal{A})]^{Nu-int}$ Or, $f^{-1}(\mathcal{A}^{Nu-int}) \subseteq [f^{-1}(\mathcal{A})]^{Nu-int}$, since $f^{-1}(\mathcal{A}^{Nu-int})$ is N-O in \mathcal{X} . Conversely, if the condition is true then let \mathcal{B} be any N-OS in \mathcal{Y} so that $\mathcal{B}^{Nu-int} = \mathcal{B}$, then by the condition $f^{-1}(\mathcal{B}^{Nu-int}) \subseteq [f^{-1}(\mathcal{B})]^{Nu-int}$, or $f^{-1}(\mathcal{B}) \subseteq [f^{-1}(\mathcal{B})]^{Nu-int}$. But, we have, in general $[f^{-1}(\mathcal{B})]^{Nu-int} \subseteq f^{-1}(\mathcal{B})$ and so $[f^{-1}(\mathcal{B})]^{Nu-int} = f^{-1}(\mathcal{B})$ which means that $f^{-1}(\mathcal{B})$ is N-O in \mathcal{T}_1 and hence by **proposition 5.1.1**, f is weakly Nucontinuous. #### **Remark 5.1.8** In *proposition 5.1.10*, the mapping f will not be Nu-continuous because in a N-TS, the Nu-interior of a set is not necessarily a N-OS. [by *Remark 2.1.3*] #### **Proposition 5.1.11** For three N-TS (X, T_1) , (Y, T_2) , and (Z, T_3) if the maps f from T_1 to T_2 and g from T_2 to T_3 are Nu-continuous, then the map from (X, T_1) to (Z, T_3) given by: $g \circ f: (X, T_1) \to (Z, T_3)$ is also Nu-continuous. #### **Proof:** Assume that \mathcal{C} is a N-OS in \mathcal{T}_3 , then by **proposition 5.1.1**, $g^{-1}(\mathcal{C})$ is N-O in \mathcal{T}_2 and by the same proposition $f^{-1}[g^{-1}(\mathcal{C})]$ is N-O in \mathcal{T}_1 . But $f^{-1}[g^{-1}(\mathcal{C})] = [f^{-1} \circ g^{-1}](\mathcal{C}) = (g \circ f)^{-1}(\mathcal{C})$. Thus, the pre-image with respect to $(g \circ f)$ of all sets that are N-O in \mathcal{T}_3 are also N-O in \mathcal{T}_1 and hence by **proposition** 5.1.1, $g \circ f$ is Nu-continuous. ## **Proposition 5.1.12** For two N-TS (X, T_1) and (Y, T_2) , if A is some non-null subset of X and if $f: (X, T_1) \to (Y, T_2)$ is weakly Nu-continuous, then the function $f_A: A \to Y$ is weakly Nu-continuous. #### **Proof:** Assume \mathcal{B} to be N-O in \mathcal{Y} , then by definition, we have: $f_{\mathcal{A}}^{-1}(\mathcal{B}) = \mathcal{A} \cap f^{-1}(\mathcal{B})$. Now, since f is weakly Nu-continuous, by **proposition 5.1.1**, $f^{-1}(\mathcal{B})$ is N-O in \mathcal{T}_1 and hence $\mathcal{A} \cap f^{-1}(\mathcal{B})$ is N-O in \mathcal{A} and by **proposition 5.1.1**, $f_{\mathcal{A}}$ is weakly Nu-continuous. ## **Proposition 5.1.13** For two N-TS (X, T_1) , (Y, T_2) , and $\{x\}$ a singleton subset of X, the function $f: (X, T_1) \to (Y, T_2)$ is Nu-continuous at $x \in X$. Let \mathcal{B} be any N-O subset of \mathcal{Y} and let $f(x) \in \mathcal{B}$. Now, $$f(x) \in \mathcal{B} \Rightarrow x \in f^{-1}(\mathcal{B})$$ $\Rightarrow \{x\} \in f^{-1}(\mathcal{B})$ \Rightarrow f is Nu-continuous at the point $x \in \mathcal{X}$. ## **Proposition 5.1.14** For a N-TS (X, C), the identity map $f: X \to X$, defined as f(x) = x for every $x \in X$ is Nu-continuous. #### **Proof:** Let $$\mathcal{B} \in \mathcal{T}$$, i.e. $\mathcal{B} \subseteq \mathcal{X}$. Now, $f(x) = x \in \mathcal{X}$ and $\mathcal{B} \subseteq \mathcal{X}$ $$\Rightarrow f^{-1}(\mathcal{B}) = \{x \in \mathcal{X} : \zeta(x) \in \mathcal{B}\}$$ $$\Rightarrow f^{-1}(\mathcal{B}) = \{x \in \mathcal{X} : x \in \mathcal{B}\}$$ $$\Rightarrow f^{-1}(\mathcal{B}) = \{x\}$$ $$\Rightarrow f^{-1}(\mathcal{B}) \text{ is } N\text{-}O \text{ in } \mathcal{X}.$$ $$\Rightarrow f \text{ is Nu-continuous.}$$ #### **Definition 5.1.3** For two N-TS (X, T_1) and (Y, T_2) , a map $f: X \to Y$ is called a N-O map if the images of all T_1 N-OS are N-OS in T_2 . The function f will be called Nu-bi-continuous if it is Nucontinuous and a N-O map. A map $f: \mathcal{X} \to \mathcal{Y}$ is called a N-C map if the images of all \mathcal{T}_1 N-CSs are N-CSs in \mathcal{T}_2 . ## **Definition 5.1.4** If (X, T_1) and (Y, T_2) be two N-TSs, then a mapping f of X into Y is said to be a Nuhomeomorphism if: - (i) f is one-one and onto - (ii) $f: X \to Y$ is weakly Nu-continuous. - (iii) $f^{-1}: \mathcal{Y} \to \mathcal{X}$ is weakly Nu-continuous. If such a function f exists then (X,T_1) and (Y,T_2) are said to be Nu-homeomorphic to each other. ## **Proposition 5.1.15** For two N-TS (X, \mathcal{T}_1) and (Y, \mathcal{T}_2) , if f is one-one and onto mapping of X to Y, then f is a Nu-homeomorphism iff f is weakly Nu-continuous and N-O map. ## **Proof:** Assume f is a Nu-homeomorphism and let $f^{-1} = g$ and $g^{-1} = f$. Now, we have f is one-one onto, and also g is one-one onto. Let $\mathcal{O} \in \mathcal{T}_1$, then $g^{-1}(\mathcal{O}) \in \mathcal{T}_2$. But since $g^{-1} = f$ so $g^{-1}(\mathcal{O}) = f(\mathcal{O}) \in \mathcal{T}_2$. Since $\mathcal{O} \in \mathcal{T}_1$ and $f(\mathcal{O}) \in \mathcal{T}_2$, it follows that f is a N-O mapping and by virtue of Nu-homeomorphism, f is weakly Nu-continuous. Conversely, let f is weakly Nu-continuous and a N-O map. Also, by condition f is one-one onto. Suffices to prove that $f^{-1} = g$ is weakly Nu-continuous. Let $O \in \mathcal{T}_1$, then $f(O) \in \mathcal{T}_2$ since f is a N-O map. That is, $g^{-1}(O) \in \mathcal{T}_2$ thereby showing that $g = f^{-1}$ is weakly Nu-continuous. Hence f is a Nu-homeomorphism. ## **Proposition 5.1.16** For two N-TS (X,T_1) and (Y,T_2) , if f is one-one and onto mapping of X to Y, then f is a Nu-homeomorphism if and only if f is weakly Nu-continuous and N-C map. ## **Proof:** Let f be a Nu-homeomorphism and let \mathcal{C} be any \mathcal{T}_1 -N-CS. Then $\mathcal{X} \setminus \mathcal{C}$ is N-OS in \mathcal{T}_1 . Since $g = f^{-1}$ is weakly Nu-continuous, it follows that $g^{-1}(\mathcal{X} \setminus \mathcal{C})$ is N-OS in \mathcal{T}_2 . But, $g^{-1}(\mathcal{X} \setminus \mathcal{C}) = \mathcal{Y} \setminus g^{-1}(\mathcal{C})$. Hence $\mathcal{Y} \setminus g^{-1}(\mathcal{C})$ is N-OS in \mathcal{T}_2 and as such $g^{-1}(\mathcal{C})$ is N-CS in \mathcal{T}_2 , that is $g^{-1}(\mathcal{C}) = f(\mathcal{C})$ is N-CS in \mathcal{T}_2 . Hence f is weakly Nu-continuous and a N-C map. Conversely, let the conditions hold and let \mathcal{O} be any N-OS in \mathcal{T}_1 , then $\mathcal{X}\setminus\mathcal{O}$ is N-CS and since f is a NC map, $f(\mathcal{X}\setminus\mathcal{O})=g^{-1}(\mathcal{X}\setminus\mathcal{O})=\mathcal{Y}\setminus g^{-1}(\mathcal{O})$ is a N-CS in \mathcal{T}_2 which implies that $g^{-1}(\mathcal{O})$ is N-OS in \mathcal{T}_2 . Thus, pre-image of every N-OS in \mathcal{T}_1 under the function g is N-OS in \mathcal{T}_2 . Thus, $g=f^{-1}$ is weakly Nu-continuous and hence f is a Nu-homeomorphism. ## **Proposition 5.1.17** For two N-TSs (X, T_1) and (Y, T_2) , if a mapping f from T_1 to T_2 is one-one onto and weakly Nu-continuous then f is a Nu-homeomorphism if f is N-O or N-C map. #### **Proof:** We assume that f is one-one onto and weakly Nu-continuous and also that f is either a N-O or N-C map. We will show that f^{-1} is weakly Nu-continuous. It will suffice to show that $f^{-1}(\mathcal{B}^{Nu-cl}) \subseteq [f^{-1}(\mathcal{B})]^{Nu-cl}$ as per **proposition 5.1.9** for any $\mathcal{B} \subseteq \mathcal{Y}$. Now, $\mathcal{B} \subseteq \mathcal{Y} \Rightarrow [f^{-1}(\mathcal{B})]^{Nu-cl} \subseteq \mathcal{X}$ and is a N-CS in \mathcal{X} . And since f is a N-C map, we have: $$f([f^{-1}(\mathcal{B})]^{Nu-cl}) = \{f([f^{-1}(\mathcal{B})]^{Nu-cl})\}^{Nu-cl}, \text{ since } f(\mathcal{A}) = [f(\mathcal{A})]^{Nu-cl}.....(1)$$ Now, $f^{-1}(\mathcal{B}) \subseteq [f^{-1}(\mathcal{B})]^{Nu-cl}$ This implies: $f(f^{-1}(\mathcal{B})) \subseteq f([f^{-1}(\mathcal{B})]^{Nu-cl})$ $$\Rightarrow \left[f\big(f^{-1}(\mathcal{B})\big)\right]^{Nu-cl}\subseteq \left[f\big([f^{-1}(\mathcal{B})]^{Nu-cl}\big)\right]^{Nu-cl}$$ $$\Rightarrow \left[f(f^{-1}(\mathcal{B})) \right]^{Nu-cl} \subseteq f([f^{-1}(\mathcal{B})]^{Nu-cl}) \text{ using } (I)$$ $$\Rightarrow f\Big(f^{-1}(\mathcal{B}^{Nu-cl})\Big)\subseteq f([f^{-1}(\mathcal{B})]^{Nu-cl})$$ $$\Rightarrow f^{-1}(\mathcal{B}^{Nu-cl}) \subseteq [f^{-1}(\mathcal{B})]^{Nu-cl}$$ \Rightarrow f^{-1} is weakly Nu-continuous by *proposition 5.1.9*. Hence the function f is a Nu-homeomorphism. ## **Proposition 5.1.18** For two N-TS (X, C_X) and (Y, C_Y) , a function $f: (X, C_X) \to (Y, C_Y)$ is N-O iff $f(\mathcal{A}^{Nu-int}) \subseteq [f(\mathcal{A})]^{Nu-int}$ for every $\mathcal{A} \subseteq X$. #### **Proof:** Let f be N-O map and $\mathcal{A} \subseteq \mathcal{X}$ then $f(\mathcal{A}^{Nu-int})$ is N-O in $\mathcal{C}_{\mathcal{Y}}$ since \mathcal{A}^{Nu-int} is N-O in $\mathcal{C}_{\mathcal{X}}$. Now, $\mathcal{A}^{Nu-int} \subseteq \mathcal{A}$, so $f(\mathcal{A}^{Nu-int}) \subseteq f(\mathcal{A})$. Again, since $f(\mathcal{A}^{Nu-int})$ is N-O in $\mathcal{C}_{\mathcal{Y}}$, so $[f(\mathcal{A}^{Nu-int})]^{Nu-int} = f(\mathcal{A}^{Nu-int})$(1) Also, $$f(\mathcal{A}^{Nu-int}) \subseteq f(\mathcal{A}) \Rightarrow [f(\mathcal{A}^{Nu-int})]^{Nu-int} \subseteq [f(\mathcal{A})]^{Nu-int}$$ $\Rightarrow f(\mathcal{A}^{Nu-int}) \subseteq [f(\mathcal{A})]^{Nu-int}$ by (1) Conversely, let the condition be true. That is, $f(\mathcal{A}^{Nu-int}) \subseteq [f(\mathcal{A})]^{Nu-int}$ for every $\mathcal{A} \subseteq \mathcal{X}$ and let \mathcal{O} be any set in $\mathcal{C}_{\mathcal{X}}$, so that $\mathcal{O}^{Nu-int} = \mathcal{O}$. Then $f(\mathcal{O}) = f(\mathcal{O}^{Nu-int}) \subseteq [f(\mathcal{O})]^{Nu-int}$, by the assumed condition. But, in general $[f(\mathcal{O})]^{Nu-int} \subseteq f(\mathcal{O})$. Thus, we have: $[f(\mathcal{O})]^{Nu-int} = f(\mathcal{O})$, thereby showing that $f(\mathcal{O})$ is N-O in C_y which leads to the conclusion that f is a N-O map. ## **Proposition 5.1.19** For two N-TS (X, C_X) and (Y, C_Y) , a mapping $f: (X, C_X) \to (Y, C_Y)$ is N-C map iff $[f(\mathcal{C})]^{Nu-cl} \subseteq f(\mathcal{C}^{Nu-cl})$ for every $\mathcal{C} \subseteq X$. Let f be N-C map and $C \subseteq \mathcal{X}$. Since C^{Nu-cl} is N-C in $C_{\mathcal{X}}$ and f is a N-C map we have $f(C^{Nu-cl})$ is N-C in $C_{\mathcal{Y}}$ and consequently, we have: Again, $$C \subseteq C^{Nu-cl} \Rightarrow f(C) \subseteq f(C^{Nu-cl})$$ $$\Rightarrow [f(\mathcal{C})]^{Nu-cl} \subseteq [f(\mathcal{C}^{Nu-cl})]^{Nu-cl} = f(\mathcal{C}^{Nu-cl}) \ by \ (1)$$ Thus, $$[f(\mathcal{C})]^{Nu-cl} \subseteq f(\mathcal{C}^{Nu-cl})$$. Conversely, let $[f(\mathcal{C})]^{Nu-cl} \subseteq f(\mathcal{C}^{Nu-cl})$ for all $\mathcal{C} \subseteq \mathcal{X}$ and if \mathcal{D} be any $\mathcal{C}_{\mathcal{X}}$ N-CS so that $$\mathcal{D}^{Nu-Cl} = \mathcal{D}$$. Then $f(\mathcal{D}^{Nu-Cl}) = f(\mathcal{D})$(2) Now, by condition $[f(\mathcal{D})]^{Nu-cl} \subseteq f(\mathcal{D}^{Nu-cl}) = f(\mathcal{D})$ by (2) Thus, $$[f(\mathcal{D})]^{Nu-cl} \subseteq f(\mathcal{D})$$ But in general, $f(\mathcal{D}) \subseteq [f(\mathcal{D})]^{Nu-cl}$, since $\mathcal{A} \subseteq \mathcal{A}^{Nu-cl}$, [by **proposition 2.3.3** (i)] Thus, we have $[f(\mathcal{D})]^{Nu-cl} = f(\mathcal{D})$, thereby showing that $f(\mathcal{D})$ is N-CS in C_y . Hence f is a N-C map. ## **Proposition 5.1.20** For two N-TS (X, C_X) and (Y, C_Y) , if the map $f: (X, C_X) \to (Y, C_Y)$ be one-one onto, then f is a Nu-homeomorphism if and only if $[f(\mathcal{C})]^{Nu-cl} = f(\mathcal{C}^{Nu-cl})$ for all $\mathcal{C} \subseteq X$. #### **Proof:** Let f be a Nu-homeomorphism. Then f is one-one onto, f is weakly Nu-continuous and f is N-C, by *proposition 5.1.17*. Then by **proposition 5.1.19**, we have: $$f(\mathcal{C}^{Nu-cl}) \subseteq [f(\mathcal{C})]^{Nu-cl}$$(1) Also $$\mathcal{C} \subseteq \mathcal{C}^{Nu-cl} \Rightarrow f(\mathcal{C}) \subseteq f(\mathcal{C}^{Nu-cl}) \Rightarrow [f(\mathcal{C})]^{Nu-cl} \subseteq [f(\mathcal{C}^{Nu-cl})]^{Nu-cl}$$(2) Now, f is a N-C map and C^{Nu-cl} is N-CS in C_{χ} and hence $f(C^{Nu-cl})$ is N-CS in C_{χ} . Hence $$[f(\mathcal{C}^{Nu-cl})]^{Nu-cl} = f(\mathcal{C}^{Nu-cl})$$(3) From (2) and (3), we get $$[f(\mathcal{C})]^{Nu-cl} \subseteq f(\mathcal{C}^{Nu-cl})$$(4) From (1) and (4), we have: $$f(\mathcal{C}^{Nu-cl}) = [f(\mathcal{C})]^{Nu-cl}$$. Conversely, let $$f(\mathcal{C}^{Nu-cl}) = [f(\mathcal{C})]^{Nu-cl}$$ for every $\mathcal{C} \subseteq \mathcal{X}$. Then obviously $f(\mathcal{C}^{Nu-cl}) \subseteq [f(\mathcal{C})]^{Nu-cl}$, and so by **proposition 5.1.19**, the function f is weakly Nu-continuous. Again, if $$\mathcal{D}$$ is any N - CS in C_{χ} , so that $\mathcal{D}^{Nu-cl} = \mathcal{D}$, then $f(\mathcal{D}^{Nu-cl}) = f(\mathcal{D})$ $$\Rightarrow f(\mathcal{D}) = f(\mathcal{D}^{Nu-cl}) = [f(\mathcal{D})]^{Nu-cl}$$ by the given condition. Hence $f(\mathcal{D})$ is N-C in $C_{\mathcal{V}}$ for every N-CS \mathcal{D} in $C_{\mathcal{X}}$ and so the function f is N-C. Now, since f is N-C as well as Nu-continuous and it is also given to be one-one and onto and hence f is a Nu-homeomorphism. ## **Proposition 5.1.21** For two N-TS (X, C_X) and (Y, C_Y) , if the mapping $f: (X, C_X) \to (Y, C_Y)$ be N-O and onto, and if \mathcal{B} is a Nu-base for C_X then the class $\{f(B): B \in \mathcal{B}\}$ is a Nu-base for C_Y . #### **Proof:** Assume Q to be any N-OS in C_y and say $y \in Q$ be an arbitrary member. Now since f is onto, there will be some x so that f(x) = y. Moreover, \mathcal{B} being a Nu-base for $C_{\mathcal{X}}$, there will be some member of \mathcal{B} to which x belongs. If B_x happens to be the smallest member of \mathcal{B} so that $x \in B_x$, then f being N-O, $\zeta(B_x)$ will be N-O in C_y . Also, $f(x) \in f(B_x)$ and as such $f(B_x)$ will be the smallest N-OS containing B_x in C_y since B_x is the smallest N-OS containing x in C_x . Thus, we must have: $y = f(x) \in f(B_x) \subseteq Q$ and since the member B of B is arbitrary so the class $\{f(B): B \in B\}$ becomes a Nu-base for C_y . #### **Proposition 5.1.22** For two N-TS (X, C_X) and (Y, C_Y) let \mathcal{B} be a Nu-base for C_X . If the mapping $f: (X, C_X) \to (Y, C_Y)$ be such that $f(\mathcal{B}) \in C_Y$ for every $\mathcal{B} \in \mathcal{B}$, then f is a N-O map. #### **Proof:** Let \mathcal{O} be any member of \mathcal{C}_{χ} . It suffices to show that $f(\mathcal{O})$ is a member of \mathcal{C}_{y} . Since \mathcal{B} is a Nu-base for \mathcal{C}_{χ} we have: $\mathcal{O} = \bigcup \{B_{\alpha} : B_{\alpha} \in \mathcal{B}\}.$ So $f(\mathcal{O}) = f(\bigcup \{B_{\alpha}: B_{\alpha} \in \mathcal{B}\}) = \bigcup \{f(B_{\alpha}): B_{\alpha} \in \mathcal{B}\}$. Now, by the given condition each $f(B_{\alpha}) \in C_y$ and hence $f(\mathcal{O}) \in C_y$ and hence the function f is N-O. ## **Proposition 5.1.23** For two N-TSs (X, C_X) and (Y, C_Y) , let the mapping $f: (X, C_X) \to (Y, C_Y)$ be a Nuhomeomorphism then for $A \subseteq X$, $B \subseteq Y$ such that f(A) = B, the map $f_A: (X, C_{X/A}) \to (Y, C_{Y/B})$ is a Nu-homeomorphism, where $C_{X/A}$ and $C_{Y/B}$ denote the relative TSs. Since f is one-one, so $f_{\mathcal{A}}$ is also one-one. Also, since $f(\mathcal{A}) = \mathcal{B}$ we have $f_{\mathcal{A}}(\mathcal{A}) = \mathcal{B}$ thereby showing that $f_{\mathcal{A}}$ is onto also. Next, let $\mathcal{O} \in \mathcal{C}_{\mathcal{X}/\mathcal{A}}$, then $\mathcal{O} = \mathcal{A} \cap \mathcal{P}$, where $\mathcal{P} \in \mathcal{C}_{\mathcal{X}}$. Now since f is one-one, $f(\mathcal{A} \cap \mathcal{P}) = f(\mathcal{A}) \cap f(\mathcal{P})$. So, $$f_{\mathcal{A}}(\mathcal{O}) = f(\mathcal{O}) = f(\mathcal{A}) \cap f(\mathcal{P}) = \mathcal{B} \cap f(\mathcal{P})$$ Now, f is N-O and $P \in C_X \Rightarrow f(P) \in C_Y$. Hence $f_A(O) \in C_Y$ and so f_A is N-O and f_A is Nu-continuous by the Nu-continuity of f, by *proposition 5.1.1* Thus, f_A is a Nu-homeomorphism. # 5.2 Continuity in Anti-Topological Spaces #### **Remark 5.2.1** Definition of continuity of functions in an A-TS has been provided in *chapter 1* in the *definitions 1.6.24* and *1.6.25*. ## **Proposition 5.2.1** For three A-TS (X, \mathcal{T}_1) , (Y, \mathcal{T}_2) , and (Z, \mathcal{T}_3) if the functions f from \mathcal{T}_1 and \mathcal{T}_2 and g from \mathcal{T}_2 to \mathcal{T}_3 are anti-continuous, then the function from (X, \mathcal{T}_1) to (Z, \mathcal{T}_3) which is given by $g \circ f: (X, \mathcal{T}_1) \to (Z, \mathcal{T}_3)$ is also anti-continuous. ## **Proof**: Let \mathcal{C} be an A-OS in \mathcal{Z} , then by **definition 1.6.24** $g^{-1}(\mathcal{C})$ is A-OS in \mathcal{Y} and by the same definition $f^{-1}[g^{-1}(\mathcal{C})]$ is A-OS in \mathcal{X} . But $f^{-1}[g^{-1}(\mathcal{C})] = [f^{-1} \circ g^{-1}](\mathcal{C}) = (g \circ f)^{-1}(\mathcal{C})$. Thus, the pre-image under $g \circ f$ of all A-OS in \mathcal{Z} are A-OS in \mathcal{X} and hence by **definition 1.6.24**, the function $g \circ f$ is anti-continuous. #### **Proposition 5.2.2** For two A-TS (X, T_1) , (Y, T_2) , and $\{x\}$ a singleton subset of X, the function $f: (X, T_1) \to (Y, T_2)$ is anti-continuous at $x \in X$. ## **Proof:** Let \mathcal{B} be an A-O subset of \mathcal{Y} and let $f(x) \in \mathcal{B}$. Now, $$f(x) \in \mathcal{B} \Rightarrow x \in f^{-1}(\mathcal{B})$$ $\Rightarrow \{x\} \in f^{-1}(\mathcal{B})$ \Rightarrow f is anti-continuous at the point $x \in \mathcal{X}$ ## **Proposition 5.2.3** For an A-TS (X,T), the identity map $f: X \to X$, defined as f(x) = x for every $x \in X$ is anti-continuous. #### **Proof**: Let $\mathcal{B} \in \mathcal{T}$, *i.e.* $\mathcal{B} \subseteq \mathcal{X}$. Now, $f(x) = x \in \mathcal{X}$ and $\mathcal{B} \subseteq \mathcal{X}$ $$\Rightarrow f^{-1}(\mathcal{B}) = \{x \in \mathcal{X} : f(x) \in \mathcal{B}\}$$ $$\Rightarrow f^{-1}(\mathcal{B}) = \{x \in \mathcal{X} : x \in \mathcal{B}\}\$$ $$\Rightarrow f^{-1}(\mathcal{B}) = \{x\}$$ $$\Rightarrow f^{-1}(\mathcal{B}) \text{ is } A\text{-}O \text{ in } \mathcal{X}.$$ \Rightarrow f is anti-continuous. ## **Proposition 5.2.4** If a function f between two A-TSs (X, \mathcal{T}_1) and (Y, \mathcal{T}_2) is anti-continuous then for each $x \in X$ and for any A-OS \mathcal{B} containing f(x) there will be an A-OS \mathcal{A} which contains x so that $f(\mathcal{A}) = \mathcal{B}$. #### **Proof:** Assume $f(x) \in \mathcal{B}$, then $x \in f^{-1}(\mathcal{B})$. Now, if f is anti-continuous then $f^{-1}(\mathcal{B})$ is A-O in \mathcal{T}_1 . Now, \mathcal{A} is A-OS in \mathcal{X} that contains x and $f^{-1}(\mathcal{B})$ is also A-OS in \mathcal{T}_1 that also contain x. So, we must have either $f^{-1}(\mathcal{B}) \subseteq \mathcal{A}$ or, $\mathcal{A} \subseteq f^{-1}(\mathcal{B})$ which is possible only if $\mathcal{A} = f^{-1}(\mathcal{B})$ which gives $f(\mathcal{A}) = \mathcal{B}$. ## **Proposition 5.2.5** For two A-TSs (X, \mathcal{T}_1) and (Y, \mathcal{T}_2) , a map f from \mathcal{T}_1 to \mathcal{T}_2 is anti-continuous iff $(f^{-1}(\mathcal{B}))^{Anti-cl} \subseteq f^{-1}(\mathcal{B}^{Anti-cl})$ for each A-C subset \mathcal{B} of Y. ## **Proof**: Assume f to be anti-continuous, then $\mathcal{B}^{Anti-cl}$ is A-C with respect to \mathcal{T}_2 and so by **definition 1.6.25**, $f^{-1}(\mathcal{B}^{Anti-cl})$ is A-C with respect to \mathcal{T}_1 and hence $[f^{-1}(\mathcal{B}^{Anti-cl})]^{Anti-cl} = f^{-1}(\mathcal{B}^{Anti-cl})$. Now, $$\mathcal{B} \subseteq \mathcal{B}^{Anti-cl}$$ and so, $f^{-1}(\mathcal{B}) \subseteq f^{-1}(\mathcal{B}^{Anti-cl})$ $$\Rightarrow (f^{-1}(\mathcal{B}))^{Anti-cl} \subseteq [f^{-1}(\mathcal{B}^{Anti-cl})]^{Anti-cl}$$, [by **proposition 4.3.3** (iii)] But $$[f^{-1}(\mathcal{B}^{Anti-cl})]^{Nt-cl} = f^{-1}(\mathcal{B}^{Anti-cl})$$, so $(f^{-1}(\mathcal{B}))^{Anti-cl} \subseteq f^{-1}(\mathcal{B}^{Anti-cl})$. Conversely, let the condition hold and let \mathcal{C} be any A-CS with respect to \mathcal{T}_2 so that $\mathcal{C}^{Anti-cl} = \mathcal{C}$. Now, by condition $(f^{-1}(\mathcal{C}))^{Anti-cl} \subseteq f^{-1}(\mathcal{C}^{Anti-cl}) = f^{-1}(\mathcal{C})$ That is, $$(f^{-1}(\mathcal{C}))^{Anti-cl} \subseteq f^{-1}(\mathcal{C})$$. But, $$f^{-1}(\mathcal{C}) \subseteq (f^{-1}(\mathcal{C}))^{Anti-cl}$$, [by **proposition 4.3.3** (i)] Thus $(f^{-1}(\mathcal{C}))^{Anti-cl} = f^{-1}(\mathcal{C})$, thereby showing $f^{-1}(\mathcal{C})$ to be A-C with respect to \mathcal{T}_1 and hence as per *definition 1.6.25*, the map f is anti-continuous. #### **Remark 5.2.2** The above proposition does not hold if the subset \mathcal{B} of \mathcal{Y} is not an A-CS. ## **Proposition 5.2.6** For two A-TSs (X, \mathcal{T}_1) and (Y, \mathcal{T}_2) , a map f from \mathcal{T}_1 to \mathcal{T}_2 is anti-continuous iff $f(\mathcal{C}^{Anti-cl}) \subseteq [f(\mathcal{C})]^{Anti-cl}$ for any A-C subset \mathcal{C} of \mathcal{X} . #### **Proof**: Assume f to be anti-continuous and C is some A-C subset of X and let $f(C) = B \subseteq Y$. Then **proposition 5.2.6** gives $(f^{-1}(\mathcal{B}))^{Anti-cl} \subseteq f^{-1}(\mathcal{B}^{Anti-cl})$ $$\Rightarrow [f^{-1}(\eta(\mathcal{C}))]^{Anti-cl} \subseteq f^{-1}[f(\mathcal{C}))^{Anti-cl}]$$ $$\Rightarrow f^{-1}(f(\mathcal{C}^{Anti-cl})) \subseteq f^{-1}[(f(\mathcal{C}))^{Anti-cl}], \text{ since } f(\mathcal{C}) = f(\mathcal{C}^{Anti-cl})$$ Thus, $$f(\mathcal{C}^{Anti-cl}) \subseteq [f(\mathcal{C})]^{Anti-cl}$$ Conversely, let the condition hold and assume \mathcal{B} to be some A-CS with respect to \mathcal{T}_2 , then $f^{-1}(\mathcal{B}) \subseteq \mathcal{X}$. Now, by the condition, we have $f((f^{-1}(\mathcal{B}))^{Anti-cl}) \subseteq [f(f^{-1}(\mathcal{B}))]^{Anti-cl}$ $$\Rightarrow f((f^{-1}(\mathcal{B}))^{Anti-cl}) \subseteq f(f^{-1}(\mathcal{B}^{Anti-cl}))$$ \Rightarrow (f^{-1}(\mathcal{B}))^{Anti-cl} \subseteq f^{-1}(\mathcal{B}), given \mathcal{B} is A-C But, $$f^{-1}(\mathcal{B}) \subseteq (f^{-1}(\mathcal{B}))^{Anti-cl}$$, [by **proposition 4.3.3** (i)] Hence, we get $(f^{-1}(\mathcal{B}))^{Anti-cl} = f^{-1}(\mathcal{B})$ thereby showing $f^{-1}(\mathcal{B})$ to be A-C with respect to \mathcal{T}_1 and hence as per **definition 1.6.25**, the function f is anti-continuous. ## **Proposition 5.2.7** For two A-TSs (X, \mathcal{T}_1) and (Y, \mathcal{T}_2) , a map f from \mathcal{T}_1 to \mathcal{T}_2 is anti-continuous if $f^{-1}(\mathcal{A}^{Anti-int}) = [f^{-1}(\mathcal{A})]^{Anti-int}$ for any A-O subset \mathcal{A} of Y. Let the condition hold and assume that \mathcal{B} is some A-OS in \mathcal{T}_2 so that $\mathcal{B}^{Anti-int} = \mathcal{B}$, then by the given condition we have: $$f^{-1}(\mathcal{B}^{Anti-int}) = [f^{-1}(\mathcal{B})]^{Anti-int},$$ Or, $$f^{-1}(\mathcal{B}) = [f^{-1}(\mathcal{B})]^{Anti-int}$$ This shows that $f^{-1}(\mathcal{B})$ is A-O in \mathcal{T}_1 and hence as per **definition 1.6.25** the map f is anti-continuous. ## **Definition 5.2.1** For two A-TSs (X, T_1) and (Y, T_2) , a map f from T_1 to T_2 is termed an A-O map if image of any T_1 -A-OS is T_2 -A-OS. ## **Definition 5.2.2** For two A-TSs (X, T_1) and (Y, T_2) , a map f from T_1 to T_2 is called an A-C map if image of any T_1 -A-CS is T_2 -A-CS.