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CHAPTER 5 

Continuity of Functions in Neutro-Topological Spaces and 

Anti-Topological Spaces 

 

In the current chapter the aspect of continuity of functions is introduced in neutro-

topological space (N-TS) with the help of neutro-neighborhoods (Nu-nhd) and N-OSs 

and continuity properties are analyzed in different types of functions. Further, taking 

advantage of the fact that a N-TS can be obtained from every GTS, the concept of 

weakly neutro-continuity is introduced and some of the properties of such a form of 

continuity are also analyzed. Further, neutro-homeomorphism is also introduced with 

the help of weakly neutro-continuity of function and some classical properties are 

analyzed. The concept of continuity of functions in A-TSs has been defined via A-OS. 

Moreover, the concept of weak continuity could not be extended to the study in A-TSs.  

5.1  Continuity in Neutro-Topological Spaces 

Definition 5.1.1 

For two N-TSs (𝒳, 𝒯1) , (𝒴, 𝒯2) , a map 𝑓  defined between 𝒯1  and 𝒯2  will be  Nu-

continuous at a member 𝑥 of 𝒳 iff for all 𝒯2-Nu-nhd 𝒬 of  𝑓(𝑥) there is a 𝒯1-Nu-nhd 𝒪 

of the member 𝑥 so that  𝑓(𝒪) ⊂ 𝒬. 

Proposition 5.1.1 

For two N-TSs (𝒳, 𝒯1) and (𝒴, 𝒯2), a mapping  𝑓 defined between 𝒯1 and 𝒯2 will be Nu-

continuous iff for each  𝒪 ∈ 𝒯2,  𝑓−1(𝒪) ∈ 𝒯1..     

Definition 5.1.2 

For two GTSs (𝒳, 𝒯1) and (𝒴, 𝒯2), the structures (𝒳, 𝒯1 ∖ 𝜓) and (𝒴, 𝒯2 ∖ 𝜓) where 𝜓 

may be ∅ or 𝒳, are N-TSs. A function which is continuous with respect to these N-Ts 

will be called weakly Nu-continuous.  

_________________________ 
Some of the results discussed in this chapter have been published in: Basumatary B., & Khaklary J.K. (2024). A 

Study on Continuity functions in neutro-topological spaces. Neutrosophic Sets and Systems, 78, 341-352. 
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Remark 5.1.1 

We denote the topologies 𝒯1 ∖ 𝜓  and 𝒯2 ∖ 𝜓 with the symbol Ꞇ wherever necessary. 

That is, Ꞇ will denote 𝒯1 ∖ 𝜓 or 𝒯2 ∖ 𝜓 with 𝜓 = ∅, or 𝒳. It may be observed that in the 

N-TS (𝒳, Ꞇ), the union or the intersection of N-OS are N-O. If a function is weakly Nu-

continuous then the properties of union or the intersection of the N-OS in the N-TS is 

preserved in the resulting N-T from the parent topology from which the whole set or the 

null set is excluded. Moreover, once a function is termed weakly Nu-continuous, 

properties of closure and interior will also be preserved. While dealing with closure 

properties, it may be assumed that the N-T that is in use is 𝒯1 ∖ ∅ and 𝒯2 ∖ ∅ and while 

dealing with interior properties, it might be assumed that the N-Ts 𝒯1 ∖ 𝒳 and 𝒯2 ∖ 𝒳 

are in use.             

Proposition 5.1.2 

If a map is Nu-continuous then it is also weakly Nu-continuous. 

Proof:  

If 𝜁 , a map between 𝒯1  and 𝒯2  is Nu-continuous, then if 𝒲 ∈ 𝒯2  then  𝑓−1(𝒲) ∈ 𝒯1 . 

That is, if 𝒲 is 𝒯2-N-O then 𝑓−1(𝒲) is 𝒯1-N-O. Since in a N-TS, the null set or the 

whole set do not simultaneously belong to the N-T and also in the N-TS (𝒳, Ꞇ), the null 

set or the whole set are excluded and as such every 𝒯2-N-OS will be Ꞇ-N-O and every 

𝒯1 -N-OS will be Ꞇ-N-O and thus the map 𝑓  between (𝒳, Ꞇ) and (𝒴, Ꞇ)will be Nu-

continuous. Thus 𝑓 is weakly Nu-continuous.     

Remark 5.1.2   

Proposition 5.1.2 is not always true the other way around because a N-TS may be 

obtainable from a GTS by the exclusion of the null set or the whole set but the same is 

not the case the other way around. That is, we cannot obtain a GTS by including the null 

set or the whole set to any random N-TS. For a function to be weakly Nu-continuous, all 

the properties of continuity of the function in a GTS are intact, except for the exclusion 

of the null set or the whole set from the GTSs in context. However, in other N-TSs, 

where union or intersections of members are not members of a N-T, the properties of 

weakly continuity will fail and hence the converse part will fail in general.  

Proposition 5.1.3 

If a map is continuous then it is also weakly Nu-continuous.  
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Proof: 

Let 𝑓 be a map between 𝒯1 and 𝒯2. If 𝑓 is continuous, then for each 𝒲 ∈ 𝒯2,  𝑓−1(𝒲) ∈

𝒯1. Thus,  𝑓−1(𝒳) ∈ 𝒯1and 𝑓−1(∅) ∈ 𝒯1. Now, the map 𝑓 maps (𝒳, Ꞇ) to (𝒴, Ꞇ) in such 

a manner that either ∅ or 𝒳 are excluded from the two topologies 𝒯1 and 𝒯2. However, 

the other open sets of the two topologies are intact in 𝒯1 and 𝒯2. Hence, the property of 

continuity of the map 𝑓 between 𝒯1 and 𝒯2,  is carried over to the map 𝑓 between (𝒳, Ꞇ) 

and (𝒴, Ꞇ) and hence 𝑓 becomes weakly Nu-continuous.  

Remark 5.1.3 

The converse of Proposition 5.1.3 is not always true. If 𝑓 that maps a GTS (𝒳, 𝒯1) to 

another GTS (𝒴, 𝒯2) is continuous then 𝑓−1(𝒳) ∈ 𝒯1but if we consider the N-Ts 𝒯1 ∖ 𝒳 

and 𝒯2 ∖ 𝒳for weakly Nu-continuity then we do not need to worry whether 𝑓−1(𝒳) ∈

𝒯1 or not, as 𝒳 itself being excluded there will no image of 𝒳 in 𝒯2 and as such the map 

will be weakly Nu-continuous. However, the map will not be continuous 

because 𝑓−1(𝒳) ∉ 𝒯1 as the image of 𝒳 will not be there in 𝒯2.  

Proposition 5.1.4 

For two N-TSs (𝒳, 𝒯1) , (𝒴, 𝒯2) , the map 𝑓  between 𝒯1  and 𝒯2   will be weakly Nu-

continuous iff for every 𝒱, a 𝒯2-N-CS,  𝑓−1(𝒱) is 𝒯1-N-C. 

Proof: 

If the map 𝑓 between 𝒯1  and 𝒯2  is weakly Nu-continuous and 𝒱 be any𝒯2-N-CS then 

𝒸𝒱(= 𝒴 ∖ 𝒱) will be 𝒯2-N-O and 𝑓 being weakly Nu-continuous, 𝑓−1(𝒴 ∖ 𝒱) will be 

𝒯1-N-O.  

Now, 𝑓−1(𝒴 ∖ 𝒱) = 𝒳 ∖  𝑓−1(𝒱), which is 𝒯1-N-O and hence 𝑓−1(𝒱) is 𝒯1-N-C.          

Conversely, for 𝑓−1(𝒱) is 𝒯1-N-C for every 𝒱 that are N-C in 𝒯2, then for any 𝒲, which 

is 𝒯2-N-O, 𝒴 ∖ 𝒲 will be 𝒯2-N-C and as such 𝑓−1(𝒴 ∖ 𝒲) is 𝒯1-N-C.  

Now,  𝑓−1(𝒴 ∖ 𝒲) = 𝒳 ∖  𝑓−1(𝒲)will be 𝒯1-N-C, thereby showing that 𝑓−1(𝒲)is 𝒯1-

N-O. Hence, as per proposition 5.1.1, 𝑓 is weakly Nu-continuous. 

Proposition 5.1.5     

For two N-TS (𝒳, 𝒯1) and (𝒴, 𝒯2), the map 𝑓 from 𝒯1 to 𝒯2 will be Nu-continuous iff for 

any 𝑥 ∈ 𝒳, the pre-image of all 𝒯2-Nu-nhd of  𝑓(𝑥) will be 𝒯1-Nu-nhd of 𝑥.  

Proof: 
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We assume the map 𝑓 to be Nu-continuous, and 𝑥 ∈ 𝒳 and 𝒩 be a random 𝒯2-Nu-nhd 

of 𝑓(𝑥). Then the definition of Nu-nhd says that there is a 𝒱 ∈ 𝒯2 so that 𝑓(𝑥) ∈ 𝒱 ⊆

𝒲which gives 𝑥 ∈   𝑓−1(𝒱) ⊆   𝑓−1(𝒲). Now, 𝑓being Nu-continuous so  𝑓−1(𝒲) ∈

𝒯1 and since 𝑥 ∈   𝑓−1(𝒱) ⊆   𝑓−1(𝒲) it means that 𝑓−1(𝒲) is a 𝒯1-Nu-nhd of 𝑥. 

Conversely, let  𝑓−1(𝒲) be a 𝒯1-Nu-nhd of 𝑥 for every 𝒯2-Nu-nhd 𝒲of 𝑓(𝑥), then if 

𝒰 ∈ 𝒯2will lead to 𝑥 ∈  𝑓−1(𝒰) so that 𝑓(𝑥) ∈ 𝒰. Now, since 𝒰 ∈ 𝒯2, it is a 𝒯2-Nu-nhd 

of 𝑓(𝑥)and hence by the condition 𝑓−1(𝒰) is a 𝒯1-Nu-nhd of 𝑥and hence 𝑓−1(𝒰) ∈ 𝒯1 

and hence by proposition 5.1.1, 𝑓 is Nu-continuous.               

Proposition 5.1.6 

For two N-TS (𝒳, 𝒯1)  and (𝒴, 𝒯2) , the map 𝑓  from 𝒯1  to 𝒯2  will be weakly Nu-

continuous iff the pre-image of each member of a Nu-sub-base of  𝒴 is N-O in 𝒯1. 

Proof: 

Let 𝑓  be weakly Nu-continuous with ℬ𝑠  being a Nu-sub-base for 𝒴  and let 𝒬 ∈ 𝒯2 . 

Since each member of ℬ𝑠 is N-O in 𝒯2, so by proposition 5.1.1 it can be concluded that 

𝑓−1(𝒬) is N-O in 𝒯1 for every 𝒬 ∈ ℬ𝑠.   

Conversely, let 𝑓−1(𝒬) be N-O in 𝒯1 for every 𝒬 ∈ ℬ𝑠, and if 𝒫 is any N-OS in 𝒯2 and 

ℬ is a class of all finite intersections of components of ℬ𝑠so that ℬ forms a Nu-base for 

𝒴 then if 𝐵 ∈ ℬ, then there exists finite number of 𝒬1, 𝒬2, 𝒬3, … , 𝒬𝑛 in ℬ𝑠 so that 𝐵 =

𝒬1 ∩ 𝒬2 ∩ … ∩ 𝒬𝑛 . Then 𝑓−1(𝐵) = 𝑓−1(𝒬1) ∩ 𝑓−1(𝒬2) ∩ … ∩  𝑓−1(𝒬𝑛) . Now, each 

𝑓−1(𝒬𝑖) ∈ 𝒯1 so 𝑓−1(𝐵) ∈ 𝒯1.  

Also, since ℬ is a Nu-base for 𝒴, 𝒫 =∪ {𝐵: 𝐵 ∈ ℬ; 𝐵 ⊆ 𝒫}.  

Then 𝑓−1(𝒫) = 𝑓−1[∪ {𝐵: 𝐵 ∈ ℬ; 𝐵 ⊆ 𝒫}] =∪ [𝑓−1(𝐵): 𝐵 ∈ ℬ; 𝐵 ⊆ 𝒫] which is N-O 

in 𝒯1 since each 𝑓−1(𝐵) ∈ 𝒯1. Thus 𝑓−1(𝒫) ∈ 𝒯1 for each N-OS 𝒫in 𝒯2. Hence as per 

propositions 5.1.1 the function 𝑓 is weakly Nu-continuous. 

Remark 5.1.4 

In proposition 5.1.6 the map 𝑓 will not be Nu-continuous because in a N-TS, the union 

of members of the Nu-base may not be N-O. 

Proposition 5.1.7 

For two N-TSs (𝒳, 𝒯1) and (𝒴, 𝒯2), a function 𝑓 from 𝒯1 to 𝒯2 is weakly Nu-continuous 

iff the pre-image of every class of a Nu-base for 𝒴 is N-O in 𝒯1. 
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Proof: 

Assume 𝑓 to be weakly Nu-continuous, and assume 𝐵 to be any member of a Nu-base 

ℬ  for 𝒴 . Now, 𝐵  is N-O in 𝒯2  since 𝐵 ∈ ℬ ⊆ 𝒯2  and hence by proposition 5.1.1, 

𝑓−1(𝐵) ∈ 𝒯1. 

Conversely, let 𝑓−1(𝐵) is N-O member of 𝒯1 for any 𝐵 ∈ ℬ and assume 𝒪 to be any N-

OS in 𝒯2, then  𝒪 can be described as: 𝒪 =∪ {𝐵: 𝐵 ∈ ℬ; 𝐵 ⊆ 𝒪}. 

Hence𝑓−1(𝒪) = 𝑓−1[∪ {𝐵: 𝐵 ∈ ℬ; 𝐵 ⊆ 𝒪}] =∪ [𝑓−1(𝐵): 𝐵 ∈ ℬ; 𝐵 ⊆ 𝒪]which is N-O 

since each 𝑓−1(𝐵) is N-O. Hence as per proposition 5.1.1, 𝑓 is weakly Nu-continuous.   

Remark 5.1.5 

In proposition 5.1.7, 𝑓  will not be Nu-continuous because in a N-TS, the union of 

members of the Nu-base may not be N-O. 

Proposition 5.1.8 

For two N-TSs (𝒳, 𝒯1) and (𝒴, 𝒯2), a function 𝑓 from 𝒯1 to 𝒯2 is weakly Nu-continuous 

iff (𝑓−1(ℬ))𝑁𝑢−𝑐𝑙 ⊆ 𝑓−1(ℬ𝑁𝑢−𝑐𝑙) for any subset ℬ of 𝒴. 

Proof: 

Assume 𝑓 to be weakly Nu-continuous, then ℬ𝑁𝑢−𝑐𝑙 is N-C with respect to 𝒯2 and so by 

proposition 5.1.4, 𝑓−1(ℬ𝑁𝑢−𝑐𝑙)  is N-C with respect to 𝒯1 and hence 

[𝑓−1(ℬ𝑁𝑢−𝑐𝑙)]𝑁𝑢−𝑐𝑙 = 𝑓−1(ℬ𝑁𝑢−𝑐𝑙).  

Now, ℬ ⊆ ℬ𝑁𝑢−𝑐𝑙and so, 𝑓−1[ℬ] ⊆ 𝑓−1[ℬ𝑁𝑢−𝑐𝑙] 

⇒ [𝑓−1(ℬ)]𝑁𝑢−𝑐𝑙 ⊆ [𝑓−1(ℬ𝑁𝑢−𝑐𝑙)]𝑁𝑢−𝑐𝑙, [by proposition 2.3.3 (iii)] 

But [𝑓−1(ℬ𝑁𝑢−𝑐𝑙)]𝑁𝑢−𝑐𝑙 = 𝑓−1(ℬ𝑁𝑢−𝑐𝑙), so (𝑓−1(ℬ))𝑁𝑢−𝑐𝑙 ⊆ 𝑓−1(ℬ𝑁𝑢−𝑐𝑙). 

Conversely, let the condition be true. Now, if 𝒞 be any N-CS in 𝒴 then 𝒞𝑁𝑢−𝑐𝑙 = 𝒞. 

Now, by condition (𝑓−1(𝒞))𝑁𝑢−𝑐𝑙 ⊆ 𝑓−1(𝒞𝑁𝑢−𝑐𝑙) = 𝑓−1(𝒞) 

That is, (𝑓−1(𝒞))𝑁𝑢−𝑐𝑙 ⊆ 𝑓−1(𝒞). 

But, 𝑓−1(𝒞) ⊆ (𝑓−1(𝒞))𝑁𝑢−𝑐𝑙, [by proposition 2.3.3 (i)] 

Hence (𝑓−1(𝒞))𝑁𝑢−𝑐𝑙 = 𝑓−1(𝒞), thus showing that 𝑓−1(𝒞) is N-C in 𝒯1 and hence by 

proposition 5.1.4, the function 𝑓 is weakly Nu-continuous.   

Remark 5.1.6 

In proposition 5.1.8, the function 𝑓 will not be Nu-continuous because in a N-TS, the 

Nu-closure of a set is not necessarily a N-CS [by remark 2.3.1]. 
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Proposition 5.1.9 

For two N-TS (𝒳, 𝒯1) and (𝒴, 𝒯2), a map 𝑓 from 𝒯1 to 𝒯2  is weakly Nu-continuous iff 

𝑓(𝒞𝑁𝑢−𝑐𝑙) ⊆ [𝑓(𝒞)]𝑁𝑢−𝑐𝑙 for each subset 𝒞 of 𝒳. 

Proof: 

Let 𝑓  be weakly Nu-continuous and 𝒞 ⊆ 𝒳  and let 𝑓(𝒞) = ℬ ⊆ 𝒴 . Then by 

proposition 5.1.8 we have (𝑓−1(ℬ))𝑁𝑢−𝑐𝑙 ⊆ 𝑓−1(ℬ𝑁𝑢−𝑐𝑙) 

⇒ [𝑓−1(𝑓(𝒞))]𝑁𝑢−𝑐𝑙 ⊆ 𝑓−1[𝑓(𝒞))𝑁𝑢−𝑐𝑙] 

⇒ 𝑓−1(𝑓(𝒞𝑁𝑢−𝑐𝑙)) ⊆ 𝑓−1[(𝑓(𝒞))𝑁𝑢−𝑐𝑙], since 𝑓(𝒞) ⊆ 𝑓(𝒞𝑁𝑢−𝑐𝑙) 

Thus, 𝑓(𝒞𝑁𝑢−𝑐𝑙) ⊆ [𝑓(𝒞)]𝑁𝑢−𝑐𝑙 

Conversely, let the condition be true and assume that ℬ is some arbitrary N-CS set in 𝒴, 

then 𝑓−1(ℬ) ⊆ 𝒳.  

Now, by the condition, 𝑓((𝑓−1(ℬ))𝑁𝑢−𝑐𝑙) ⊆ [𝑓(𝑓−1(ℬ))]𝑁𝑢−𝑐𝑙 

           ⇒ 𝑓((𝑓−1(ℬ))𝑁𝑢−𝑐𝑙) ⊆ 𝑓(𝑓−1(ℬ𝑁𝑢−𝑐𝑙)) 

      ⇒ (𝑓−1(ℬ))𝑁𝑢−𝑐𝑙 ⊆ 𝑓−1(ℬ), since ℬ is N-CS  

But, 𝑓−1(ℬ) ⊆ (𝑓−1(ℬ))𝑁𝑢−𝑐𝑙, [by proposition 2.3.3 (i)] 

Hence, we get (𝑓−1(ℬ))𝑁𝑢−𝑐𝑙 = 𝑓−1(ℬ)  thereby showing 𝑓−1(ℬ)  is N-C in 𝒯1  and 

hence by proposition 5.1.4, 𝑓 is weakly Nu-continuous. 

Remark 5.1.7 

In proposition 5.1.9,  𝑓 will not be Nu-continuous because the Nu-closure of a set being 

equal to the set does not always mean that the set is N-C [by remark 2.3.1].  

Proposition 5.1.10 

For two N-TS (𝒳, 𝒯1) and (𝒴, 𝒯2), a map 𝑓 from 𝒯1 to 𝒯2  is weakly Nu-continuous iff 

𝑓−1(𝒜𝑁𝑢−𝑖𝑛𝑡) ⊆ [𝑓−1(𝒜)]𝑁𝑢−𝑖𝑛𝑡 for any subset 𝒜 of  𝒴. 

Proof: 

Let 𝑓  be weakly Nu-continuous. Now since 𝒜𝑁𝑢−𝑖𝑛𝑡  is N-O in 𝒴  so by proposition 

5.1.1, 𝑓−1(𝒜𝑁𝑢−𝑖𝑛𝑡)  is N-O in 𝒳  and so [𝑓−1(𝒜𝑁𝑢−𝑖𝑛𝑡)]𝑁𝑢−𝑖𝑛𝑡 = 𝑓−1(𝒜𝑁𝑢−𝑖𝑛𝑡) . 

Now, 𝒜𝑁𝑢−𝑖𝑛𝑡 ⊆ 𝒜 ⇒ 𝑓−1(𝒜𝑁𝑢−𝑖𝑛𝑡) ⊆ 𝑓−1(𝒜) 

⇒ [𝑓−1(𝒜𝑁𝑢−𝑖𝑛𝑡)]𝑁𝑢−𝑖𝑛𝑡 ⊆ [𝑓−1(𝒜)]𝑁𝑢−𝑖𝑛𝑡 

Or, 𝑓−1(𝒜𝑁𝑢−𝑖𝑛𝑡) ⊆ [𝑓−1(𝒜)]𝑁𝑢−𝑖𝑛𝑡, since 𝑓−1(𝒜𝑁𝑢−𝑖𝑛𝑡) is N-O in 𝒳. 
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Conversely, if the condition is true then let ℬ be any N-OS in 𝒴 so that ℬ𝑁𝑢−𝑖𝑛𝑡 = ℬ, 

then by the condition 𝑓−1(ℬ𝑁𝑢−𝑖𝑛𝑡) ⊆ [𝑓−1(ℬ)]𝑁𝑢−𝑖𝑛𝑡, or 𝑓−1(ℬ) ⊆ [𝑓−1(ℬ)]𝑁𝑢−𝑖𝑛𝑡. 

But, we have, in general[𝑓−1(ℬ)]𝑁𝑢−𝑖𝑛𝑡 ⊆ 𝑓−1(ℬ)and so [𝑓−1(ℬ)]𝑁𝑢−𝑖𝑛𝑡 = 𝑓−1(ℬ) 

which means that 𝑓−1(ℬ) is N-O in 𝒯1and hence by proposition 5.1.1, 𝑓 is weakly Nu-

continuous.  

Remark 5.1.8 

In proposition 5.1.10, the mapping 𝑓 will not be Nu-continuous because in a N-TS, the 

Nu-interior of a set is not necessarily a N-OS. [by Remark 2.1.3]  

Proposition 5.1.11 

For three N-TS (𝒳, 𝒯1), (𝒴, 𝒯2), and (𝒵, 𝒯3) if the maps 𝑓 from 𝒯1 to 𝒯2 and 𝑔 from 𝒯2 

to 𝒯3  are Nu-continuous, then the map from (𝒳, 𝒯1)  to (𝒵, 𝒯3)  given by: 𝑔 ∘

𝑓: (𝒳, 𝒯1) → (𝒵, 𝒯3) is also Nu-continuous. 

Proof: 

Assume that 𝒞 is a N-OS in 𝒯3, then by proposition 5.1.1, 𝑔−1(𝒞) is N-O in 𝒯2 and by 

the same proposition 𝑓−1[𝑔−1(𝒞)] is N-O in 𝒯1.  

But 𝑓−1[𝑔−1(𝒞)] = [𝑓−1 ∘ 𝑔−1](𝒞) = (𝑔 ∘ 𝑓)−1(𝒞). Thus, the pre-image with respect 

to (𝑔 ∘ 𝑓) of all sets that are N-O in 𝒯3 are also N-O in 𝒯1 and hence by proposition 

5.1.1, 𝑔 ∘ 𝑓 is Nu-continuous.  

Proposition 5.1.12 

For two N-TS (𝒳, 𝒯1) and (𝒴, 𝒯2), if 𝒜 is some non-null subset of 𝒳 and if 𝑓: (𝒳, 𝒯1) →

(𝒴, 𝒯2)  is weakly Nu-continuous, then the function 𝑓𝒜 ∶ 𝒜 → 𝒴  is weakly Nu-

continuous. 

Proof: 

Assume ℬ to be N-O in 𝒴, then by definition, we have: 𝑓𝒜
−1(ℬ) = 𝒜 ∩ 𝑓−1(ℬ).  

Now, since 𝑓 is weakly Nu-continuous, by proposition 5.1.1, 𝑓−1(ℬ) is N-O in 𝒯1and 

hence 𝒜 ∩ 𝑓−1(ℬ) is N-O in 𝒜 and by proposition 5.1.1, 𝑓𝒜  is weakly Nu-continuous.   

Proposition 5.1.13 

For two N-TS (𝒳, 𝒯1) , (𝒴, 𝒯2) , and {𝓍}  a singleton subset of 𝒳 , the function 

𝑓: (𝒳, 𝒯1) → (𝒴, 𝒯2) is Nu-continuous at 𝓍 ∈ 𝒳.  

Proof: 
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Let ℬ be any N-O subset of 𝒴 and let 𝑓(𝑥) ∈ ℬ. 

Now, 𝑓(𝑥) ∈ ℬ ⇒ 𝑥 ∈ 𝑓−1(ℬ) 

⇒ {𝑥} ∈ 𝑓−1(ℬ) 

⇒ 𝑓 is Nu-continuous at the point 𝓍 ∈ 𝒳. 

Proposition 5.1.14 

For a N-TS (𝒳, Ꞇ), the identity map 𝑓: 𝒳 → 𝒳, defined as 𝑓(𝑥) = 𝑥 for every 𝑥 ∈ 𝒳 is 

Nu-continuous. 

Proof: 

Let ℬ ∈ 𝒯, i.e. ℬ ⊆ 𝒳. Now, 𝑓(𝑥) = 𝑥 ∈ 𝒳 and ℬ ⊆ 𝒳 

⇒ 𝑓−1(ℬ) = {𝑥 ∈ 𝒳: 𝜁(𝑥) ∈ ℬ} 

           ⇒ 𝑓−1(ℬ) = {𝑥 ∈ 𝒳: 𝑥 ∈ ℬ} 

           ⇒ 𝑓−1(ℬ) = {𝑥} 

           ⇒ 𝑓−1(ℬ) is N-O in 𝒳. 

           ⇒  𝑓 is Nu-continuous.  

Definition 5.1.3 

For two N-TS (𝒳, 𝒯1) and (𝒴, 𝒯2), a map 𝑓: 𝒳 → 𝒴 is called a N-O map if the images 

of all 𝒯1 N-OS are N-OS in 𝒯2. The function 𝑓 will be called Nu-bi-continuous if it is Nu-

continuous and a N-O map.     

A map 𝑓: 𝒳 → 𝒴 is called a N-C map if the images of all 𝒯1 N-CSs are N-CSs in 𝒯2. 

Definition 5.1.4 

If (𝒳, 𝒯1) and (𝒴, 𝒯2) be two N-TSs, then a mapping 𝑓 of 𝒳 into 𝒴 is said to be a Nu-

homeomorphism if:  

(i) 𝑓 is one-one and onto 

(ii) 𝑓: 𝒳 → 𝒴 is weakly Nu-continuous. 

(iii) 𝑓−1: 𝒴 → 𝒳 is weakly Nu-continuous. 

If such a function 𝑓 exists then (𝒳, 𝒯1) and (𝒴, 𝒯2) are said to be Nu-homeomorphic to 

each other. 

Proposition 5.1.15 

For two N-TS (𝒳, 𝒯1) and (𝒴, 𝒯2), if 𝑓 is one-one and onto mapping of 𝒳 to 𝒴, then 𝑓 

is a Nu-homeomorphism iff 𝑓 is weakly Nu-continuous and N-O map. 
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Proof: 

Assume 𝑓 is a Nu-homeomorphism and let 𝑓−1 = 𝑔 and 𝑔−1 = 𝑓. Now, we have 𝑓 is 

one-one onto, and also 𝑔  is one-one onto. Let 𝒪 ∈ 𝒯1 , then 𝑔−1(𝒪) ∈ 𝒯2 . But since 

𝑔−1 = 𝑓 so 𝑔−1(𝒪) = 𝑓(𝒪) ∈ 𝒯2. Since 𝒪 ∈ 𝒯1 and 𝑓(𝒪) ∈ 𝒯2, it follows that 𝑓 is a N-

O mapping and by virtue of Nu-homeomorphism, 𝑓 is weakly Nu-continuous.  

Conversely, let 𝑓 is weakly Nu-continuous and a N-O map. Also, by condition 𝑓 is one-

one onto. Suffices to prove that 𝑓−1 = 𝑔 is weakly Nu-continuous. Let 𝒪 ∈ 𝒯1 , then 

𝑓(𝒪) ∈ 𝒯2 since 𝑓 is a N-O map. That is, 𝑔−1(𝒪) ∈ 𝒯2 thereby showing that 𝑔 = 𝑓−1 is 

weakly Nu-continuous. Hence 𝑓 is a Nu-homeomorphism. 

Proposition 5.1.16 

For two N-TS (𝒳, 𝒯1) and (𝒴, 𝒯2), if 𝑓 is one-one and onto mapping of 𝒳 to 𝒴, then 𝑓 

is a Nu-homeomorphism if and only if 𝑓 is weakly Nu-continuous and N-C map. 

Proof: 

Let 𝑓 be a Nu-homeomorphism and let 𝒞 be any 𝒯1-N-CS. Then 𝒳 ∖ 𝒞is N-OS in 𝒯1. 

Since 𝑔 = 𝑓−1 is weakly Nu-continuous, it follows that 𝑔−1(𝒳 ∖ 𝐶) is N-OS in 𝒯2. But, 

𝑔−1(𝒳 ∖ 𝐶) = 𝒴 ∖ 𝑔−1(𝒞). Hence 𝒴 ∖ 𝑔−1(𝒞) is N-OS in 𝒯2 and as such 𝑔−1(𝒞) is N-

CS in 𝒯2, that is 𝑔−1(𝒞) = 𝑓(𝒞) is N-CS in 𝒯2. Hence 𝑓 is weakly Nu-continuous and a 

N-C map. 

Conversely, let the conditions hold and let 𝒪 be any N-OS in 𝒯1, then 𝒳 ∖ 𝒪 is N-CS and 

since 𝑓 is a NC map, 𝑓(𝒳 ∖ 𝒪) = 𝑔−1(𝒳 ∖ 𝒪) = 𝒴 ∖ 𝑔−1(𝒪) is a N-CS in 𝒯2 which 

implies that 𝑔−1(𝒪) is N-OS in 𝒯2 . Thus, pre-image of every N-OS in 𝒯1 under the 

function 𝑔 is N-OS in 𝒯2. Thus, 𝑔 = 𝑓−1 is weakly Nu-continuous and hence 𝑓 is a Nu-

homeomorphism.     

Proposition 5.1.17 

For two N-TSs (𝒳, 𝒯1) and (𝒴, 𝒯2), if a mapping 𝑓 from 𝒯1 to 𝒯2 is one-one onto and 

weakly Nu-continuous then 𝑓 is a Nu-homeomorphism if 𝑓 is N-O or N-C map.     

Proof: 

We assume that 𝑓 is one-one onto and weakly Nu-continuous and also that 𝑓 is either a 

N-O or N-C map. We will show that 𝑓−1 is weakly Nu-continuous. It will suffice to 

show that 𝑓−1(ℬ𝑁𝑢−𝑐𝑙) ⊆ [𝑓−1(ℬ)]𝑁𝑢−𝑐𝑙 as per proposition 5.1.9 for any ℬ ⊆ 𝒴. 

Now, ℬ ⊆ 𝒴 ⇒ [𝑓−1(ℬ)]𝑁𝑢−𝑐𝑙 ⊆ 𝒳 and is a N-CS in 𝒳.  



10 
 

And since 𝑓 is a N-C map, we have: 

𝑓([𝑓−1(ℬ)]𝑁𝑢−𝑐𝑙) = {𝑓([𝑓−1(ℬ)]𝑁𝑢−𝑐𝑙)}𝑁𝑢−𝑐𝑙, since 𝑓(𝒜) = [𝑓(𝒜)]𝑁𝑢−𝑐𝑙........... (1)         

Now, 𝑓−1(ℬ) ⊆ [𝑓−1(ℬ)]𝑁𝑢−𝑐𝑙 

This implies: 𝑓(𝑓−1(ℬ)) ⊆ 𝑓([𝑓−1(ℬ)]𝑁𝑢−𝑐𝑙) 

 ⇒ [𝑓(𝑓−1(ℬ))]
𝑁𝑢−𝑐𝑙

⊆ [𝑓([𝑓−1(ℬ)]𝑁𝑢−𝑐𝑙)]𝑁𝑢−𝑐𝑙 

            ⇒ [𝑓(𝑓−1(ℬ))]
𝑁𝑢−𝑐𝑙

⊆ 𝑓([𝑓−1(ℬ)]𝑁𝑢−𝑐𝑙) using (1) 

 ⇒ 𝑓(𝑓−1(ℬ𝑁𝑢−𝑐𝑙)) ⊆ 𝑓([𝑓−1(ℬ)]𝑁𝑢−𝑐𝑙) 

 ⇒ 𝑓−1(ℬ𝑁𝑢−𝑐𝑙) ⊆ [𝑓−1(ℬ)]𝑁𝑢−𝑐𝑙 

⇒ 𝑓−1 is weakly Nu-continuous by proposition 5.1.9. Hence the function 𝑓 is a 

Nu-homeomorphism.   

Proposition 5.1.18 

For two N-TS (𝒳, Ꞇ𝒳)  and (𝒴, Ꞇ𝒴) , a function 𝑓: (𝒳, Ꞇ𝒳) → (𝒴, Ꞇ𝒴)  is N-O iff 

𝑓(𝒜𝑁𝑢−𝑖𝑛𝑡) ⊆ [𝑓(𝒜)]𝑁𝑢−𝑖𝑛𝑡 for every 𝒜 ⊆ 𝒳.   

Proof: 

Let 𝑓 be N-O map and 𝒜 ⊆ 𝒳 then 𝑓(𝒜𝑁𝑢−𝑖𝑛𝑡) is N-O in Ꞇ𝒴 since 𝒜𝑁𝑢−𝑖𝑛𝑡 is N-O in 

Ꞇ𝒳. Now, 𝒜𝑁𝑢−𝑖𝑛𝑡 ⊆ 𝒜, so 𝑓(𝒜𝑁𝑢−𝑖𝑛𝑡) ⊆ 𝑓(𝒜). Again, since 𝑓(𝒜𝑁𝑢−𝑖𝑛𝑡)is N-O in 

Ꞇ𝒴, so [𝑓(𝒜𝑁𝑢−𝑖𝑛𝑡)]𝑁𝑢−𝑖𝑛𝑡 = 𝑓(𝒜𝑁𝑢−𝑖𝑛𝑡…………… (1) 

Also, 𝑓(𝒜𝑁𝑢−𝑖𝑛𝑡) ⊆ 𝑓(𝒜) ⇒ [𝑓(𝒜𝑁𝑢−𝑖𝑛𝑡)]𝑁𝑢−𝑖𝑛𝑡 ⊆ [𝑓(𝒜)]𝑁𝑢−𝑖𝑛𝑡 

            ⇒ 𝑓(𝒜𝑁𝑢−𝑖𝑛𝑡) ⊆ [𝑓(𝒜)]𝑁𝑢−𝑖𝑛𝑡 by (1) 

Conversely, let the condition be true. That is, 𝑓(𝒜𝑁𝑢−𝑖𝑛𝑡) ⊆ [𝑓(𝒜)]𝑁𝑢−𝑖𝑛𝑡  for every 

𝒜 ⊆ 𝒳 and let 𝒪 be any set in Ꞇ𝒳, so that 𝒪𝑁𝑢−𝑖𝑛𝑡 = 𝒪.  

Then 𝑓(𝒪) = 𝑓(𝒪𝑁𝑢−𝑖𝑛𝑡) ⊆ [𝑓(𝒪)]𝑁𝑢−𝑖𝑛𝑡, by the assumed condition. 

But, in general [𝑓(𝒪)]𝑁𝑢−𝑖𝑛𝑡 ⊆ 𝑓(𝒪). 

Thus, we have: [𝑓(𝒪)]𝑁𝑢−𝑖𝑛𝑡 = 𝑓(𝒪), thereby showing that 𝑓(𝒪)is N-O in Ꞇ𝒴  which 

leads to the conclusion that 𝑓 is a N-O map.           

Proposition 5.1.19 

For two N-TS (𝒳, Ꞇ𝒳) and (𝒴, Ꞇ𝒴), a mapping 𝑓: (𝒳, Ꞇ𝒳) → (𝒴, Ꞇ𝒴) is N-C map iff 

[𝑓(𝒞)]𝑁𝑢−𝑐𝑙 ⊆ 𝑓(𝒞𝑁𝑢−𝑐𝑙) for every 𝒞 ⊆ 𝒳. 

Proof: 
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Let 𝑓 be N-C map and 𝒞 ⊆ 𝒳. Since 𝒞𝑁𝑢−𝑐𝑙 is N-C in Ꞇ𝒳 and 𝑓 is a N-C map we have 

𝑓(𝒞𝑁𝑢−𝑐𝑙) is N-C in Ꞇ𝒴 and consequently, we have: 

[𝑓(𝒞𝑁𝑢−𝑐𝑙)]𝑁𝑡−𝑐𝑙 = 𝑓(𝒞𝑁𝑢−𝑐𝑙) .................. (1) 

Again, 𝒞 ⊆ 𝒞𝑁𝑢−𝑐𝑙 ⇒ 𝑓(𝒞) ⊆ 𝑓(𝒞𝑁𝑢−𝑐𝑙) 

⇒ [𝑓(𝒞)]𝑁𝑢−𝑐𝑙 ⊆ [𝑓(𝒞𝑁𝑢−𝑐𝑙)]𝑁𝑢−𝑐𝑙 = 𝑓(𝒞𝑁𝑢−𝑐𝑙) by (1)  

Thus, [𝑓(𝒞)]𝑁𝑢−𝑐𝑙 ⊆ 𝑓(𝒞𝑁𝑢−𝑐𝑙). 

Conversely, let [𝑓(𝒞)]𝑁𝑢−𝑐𝑙 ⊆ 𝑓(𝒞𝑁𝑢−𝑐𝑙) for all 𝒞 ⊆ 𝒳  and if 𝒟 be any Ꞇ𝒳  N-CS so 

that 𝒟𝑁𝑢−𝐶𝑙 = 𝒟. Then 𝑓(𝒟𝑁𝑢−𝐶𝑙) = 𝑓(𝒟) ............... (2) 

Now, by condition [𝑓(𝒟)]𝑁𝑢−𝑐𝑙 ⊆ 𝑓(𝒟𝑁𝑢−𝑐𝑙) = 𝑓(𝒟) by (2) 

Thus, [𝑓(𝒟)]𝑁𝑢−𝑐𝑙 ⊆ 𝑓(𝒟) 

But in general, 𝑓(𝒟) ⊆  [𝑓(𝒟)]𝑁𝑢−𝑐𝑙, since 𝒜 ⊆ 𝒜𝑁𝑢−𝑐𝑙, [by proposition 2.3.3 (i)] 

Thus, we have [𝑓(𝒟)]𝑁𝑢−𝑐𝑙 = 𝑓(𝒟), thereby showing that 𝑓(𝒟) is N-CS in Ꞇ𝒴. 

Hence 𝑓 is a N-C map.      

Proposition 5.1.20 

For two N-TS (𝒳, Ꞇ𝒳) and (𝒴, Ꞇ𝒴), if the map 𝑓: (𝒳, Ꞇ𝒳) → (𝒴, Ꞇ𝒴) be one-one onto, 

then 𝑓 is a Nu-homeomorphism if  and only if [𝑓(𝒞)]𝑁𝑢−𝑐𝑙 = 𝑓(𝒞𝑁𝑢−𝑐𝑙) for all 𝒞 ⊆ 𝒳. 

Proof: 

Let 𝑓 be a Nu-homeomorphism. Then 𝑓  is one-one onto, 𝑓  is weakly Nu-continuous 

and 𝑓 is N-C, by proposition 5.1.17. 

Then by proposition 5.1.19, we have: 𝑓(𝒞𝑁𝑢−𝑐𝑙) ⊆ [𝑓(𝒞)]𝑁𝑢−𝑐𝑙 .................. (1) 

Also 𝒞 ⊆ 𝒞𝑁𝑢−𝑐𝑙 ⇒ 𝑓(𝒞) ⊆ 𝑓(𝒞𝑁𝑢−𝑐𝑙) ⇒ [𝑓(𝒞)]𝑁𝑢−𝑐𝑙 ⊆ [𝑓(𝒞𝑁𝑢−𝑐𝑙)]𝑁𝑢−𝑐𝑙............ (2) 

Now, 𝑓 is a N-C map and 𝒞𝑁𝑢−𝑐𝑙 is N-CS in Ꞇ𝒳 and hence 𝑓(𝒞𝑁𝑢−𝑐𝑙) is N-CS in Ꞇ𝒴. 

Hence [𝑓(𝒞𝑁𝑢−𝑐𝑙)]𝑁𝑢−𝑐𝑙 = 𝑓(𝒞𝑁𝑢−𝑐𝑙) .................. (3) 

From (2) and (3), we get [𝑓(𝒞)]𝑁𝑢−𝑐𝑙 ⊆ 𝑓(𝒞𝑁𝑢−𝑐𝑙) .................. (4) 

From (1) and (4), we have: 𝑓(𝒞𝑁𝑢−𝑐𝑙) = [𝑓(𝒞)]𝑁𝑢−𝑐𝑙. 

Conversely, let 𝑓(𝒞𝑁𝑢−𝑐𝑙) = [𝑓(𝒞)]𝑁𝑢−𝑐𝑙 for every 𝒞 ⊆ 𝒳.  

Then obviously 𝑓(𝒞𝑁𝑢−𝑐𝑙) ⊆ [𝑓(𝒞)]𝑁𝑢−𝑐𝑙, and so by proposition 5.1.19, the function 𝑓 

is weakly Nu-continuous. 

Again, if 𝒟 is any N-CS in Ꞇ𝒳, so that 𝒟𝑁𝑢−𝑐𝑙 = 𝒟, then 𝑓(𝒟𝑁𝑢−𝑐𝑙) = 𝑓(𝒟) 

⇒ 𝑓(𝒟) = 𝑓(𝒟𝑁𝑢−𝑐𝑙) = [𝑓(𝒟)]𝑁𝑢−𝑐𝑙 by the given condition.  
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Hence 𝑓(𝒟) is N-C in Ꞇ𝒴 for every N-CS 𝒟in Ꞇ𝒳 and so the function 𝑓 is N-C. 

Now, since 𝑓 is N-C as well as Nu-continuous and it is also given to be one-one and 

onto and hence 𝑓 is a Nu-homeomorphism.            

Proposition 5.1.21 

For two N-TS (𝒳, Ꞇ𝒳) and (𝒴, Ꞇ𝒴), if the mapping 𝑓: (𝒳, Ꞇ𝒳) → (𝒴, Ꞇ𝒴) be N-O and 

onto, and if  ℬ is a Nu-base for Ꞇ𝒳 then the class {𝑓(𝐵): 𝐵 ∈ ℬ} is a Nu-base for Ꞇ𝒴. 

Proof: 

Assume 𝒬 to be any N-OS in Ꞇ𝒴 and say 𝑦 ∈ 𝒬 be an arbitrary member. Now since 𝑓 is 

onto, there will be some x so that 𝑓(𝑥) = 𝑦.  

Moreover, ℬ  being a Nu-base for Ꞇ𝒳 , there will be some member of ℬ  to which x 

belongs. If 𝐵𝑥 happens to be the smallest member of ℬ so that 𝑥 ∈ 𝐵𝑥, then 𝑓 being N-

O, 𝜁(𝐵𝑥) will be N-O in Ꞇ𝒴. Also, 𝑓(𝑥) ∈ 𝑓(𝐵𝑥) and as such 𝑓(𝐵𝑥) will be the smallest 

N-OS containing 𝐵𝑥 in Ꞇ𝒴 since 𝐵𝑥 is the smallest N-OS containing x in Ꞇ𝒳.  

Thus, we must have: 𝑦 = 𝑓(𝑥) ∈ 𝑓(𝐵𝑥) ⊆ 𝒬 and since the member B of ℬ is arbitrary 

so the class {𝑓(𝐵): 𝐵 ∈ ℬ} becomes a Nu-base for Ꞇ𝒴.     

Proposition 5.1.22 

For two N-TS (𝒳, Ꞇ𝒳)  and (𝒴, Ꞇ𝒴)  let  ℬ  be a Nu-base for Ꞇ𝒳 . If the mapping 

𝑓: (𝒳, Ꞇ𝒳) → (𝒴, Ꞇ𝒴) be such that 𝑓(ℬ) ∈ Ꞇ𝒴 for every 𝐵 ∈ ℬ, then 𝑓 is a N-O map. 

Proof: 

Let 𝒪 be any member of Ꞇ𝒳. It suffices to show that 𝑓(𝒪) is a member of Ꞇ𝒴. Since ℬ 

is a Nu-base for Ꞇ𝒳we have: 𝒪 =∪ {𝐵𝛼: 𝐵𝛼 ∈ ℬ}. 

So 𝑓(𝒪) = 𝑓(∪ {𝐵𝛼: 𝐵𝛼 ∈ ℬ}) =∪ {𝑓(𝐵𝛼): 𝐵𝛼 ∈ ℬ}. Now, by the given condition 

each 𝑓(Bα) ∈ Ꞇ𝒴 and hence 𝑓(𝒪) ∈ Ꞇ𝒴 and hence the function 𝑓 is N-O. 

Proposition 5.1.23 

For two N-TSs (𝒳, Ꞇ𝒳) and (𝒴, Ꞇ𝒴), let the mapping 𝑓: (𝒳, Ꞇ𝒳) → (𝒴, Ꞇ𝒴) be a Nu-

homeomorphism then for 𝒜 ⊆ 𝒳 , ℬ ⊆ 𝒴  such that 𝑓(𝒜) = ℬ , the map 

𝑓𝒜: (𝒳, Ꞇ𝒳/𝒜) → (𝒴, Ꞇ𝒴/ℬ) is a Nu-homeomorphism, where Ꞇ𝒳/𝒜 and Ꞇ𝒴/ℬ denote the 

relative TSs. 

Proof: 
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Since 𝑓 is one-one, so 𝑓𝒜  is also one-one. Also, since 𝑓(𝒜) = ℬ we have 𝑓𝒜(𝒜) = ℬ 

thereby showing that 𝑓𝒜  is onto also. Next, let 𝒪 ∈ Ꞇ𝒳/𝒜, then 𝒪 = 𝒜 ∩ 𝒫, where 𝒫 ∈

Ꞇ𝒳. Now since 𝑓 is one-one, 𝑓(𝒜 ∩ 𝒫) = 𝑓(𝒜) ∩ 𝑓(𝒫). 

So, 𝑓𝒜(𝒪) = 𝑓(𝒪) = 𝑓(𝒜) ∩ 𝑓(𝒫) = ℬ ∩ 𝑓(𝒫) 

Now, 𝑓 is N-O and 𝒫 ∈ Ꞇ𝒳 ⇒ 𝑓(𝒫) ∈ Ꞇ𝒴 . Hence 𝑓𝒜(𝒪) ∈ Ꞇ𝒴  and so 𝑓𝒜  is N-O and 

𝑓𝒜  is Nu-continuous by the Nu-continuity of 𝑓, by proposition 5.1.1 

Thus, 𝑓𝒜  is a Nu-homeomorphism.   

5.2  Continuity in Anti-Topological Spaces 

Remark 5.2.1 

Definition of continuity of functions in an A-TS has been provided in chapter 1 in the 

definitions 1.6.24 and 1.6.25. 

Proposition 5.2.1 

For three A-TS (𝒳, 𝒯1), (𝒴, 𝒯2) , and (𝒵, 𝒯3) if the functions 𝑓  from 𝒯1  and 𝒯2  and 𝑔 

from 𝒯2  to 𝒯3  are anti-continuous, then the function from (𝒳, 𝒯1)  to (𝒵, 𝒯3)which is 

given by 𝑔 ∘ 𝑓: (𝒳, 𝒯1) → (𝒵, 𝒯3) is also anti-continuous. 

Proof: 

Let 𝒞 be an A-OS in 𝒵, then by definition 1.6.24 𝑔−1(𝒞) is A-OS in 𝒴 and by the same 

definition 𝑓−1[𝑔−1(𝒞)] is A-OS in 𝒳.  

But 𝑓−1[𝑔−1(𝒞)] = [𝑓−1 ∘ 𝑔−1](𝒞) = (𝑔 ∘ 𝑓)−1(𝒞). Thus, the pre-image under 𝑔 ∘ 𝑓 

of all A-OS in 𝒵 are A-OS in 𝒳 and hence by definition 1.6.24, the function 𝑔 ∘ 𝑓 is 

anti-continuous.  

Proposition 5.2.2 

For two A-TS (𝒳, 𝒯1) , (𝒴, 𝒯2) , and {𝓍}  a singleton subset of 𝒳 , the function 

𝑓: (𝒳, 𝒯1) → (𝒴, 𝒯2) is anti-continuous at 𝓍 ∈ 𝒳.  

Proof: 

Let ℬ be an A-O subset of 𝒴 and let 𝑓(𝑥) ∈ ℬ. 

Now, 𝑓(𝑥) ∈ ℬ ⇒ 𝑥 ∈ 𝑓−1(ℬ) 

⇒ {𝑥} ∈ 𝑓−1(ℬ) 

⇒ 𝑓 is anti-continuous at the point 𝓍 ∈ 𝒳 
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Proposition 5.2.3 

For an A-TS (𝒳, 𝒯), the identity map 𝑓: 𝒳 → 𝒳, defined as 𝑓(𝑥) = 𝑥 for every 𝑥 ∈ 𝒳 

is anti-continuous. 

Proof: 

Let ℬ ∈ 𝒯, i.e. ℬ ⊆ 𝒳. 

 Now, 𝑓(𝑥) = 𝑥 ∈ 𝒳 and ℬ ⊆ 𝒳 

⇒ 𝑓−1(ℬ) = {𝑥 ∈ 𝒳: 𝑓(𝑥) ∈ ℬ} 

⇒ 𝑓−1(ℬ) = {𝑥 ∈ 𝒳: 𝑥 ∈ ℬ} 

⇒ 𝑓−1(ℬ) = {𝑥} 

⇒ 𝑓−1(ℬ) is A-O in 𝒳.    

⇒  𝑓 is anti-continuous. 

 Proposition 5.2.4 

If a function 𝑓 between two A-TSs (𝒳, 𝒯1) and (𝒴, 𝒯2) is anti-continuous then for each 

𝑥 ∈ 𝒳 and for any A-OS ℬ containing 𝑓(𝑥) there will be an A-OS 𝒜 which contains 𝑥 

so that f(𝒜) = ℬ. 

Proof:  

Assume 𝑓(𝑥) ∈ ℬ, then 𝑥 ∈ 𝑓−1(ℬ). Now, if 𝑓 is anti-continuous then 𝑓−1(ℬ) is A-O 

in 𝒯1 . Now, 𝒜  is A-OS in 𝒳  that contains 𝑥 and 𝑓−1(ℬ) is also A-OS in 𝒯1  that also 

contain 𝑥 . So, we must have either 𝑓−1(ℬ) ⊆ 𝒜  or, 𝒜 ⊆ 𝑓−1(ℬ) which is possible 

only if 𝒜 = 𝑓−1(ℬ) which gives 𝑓(𝒜) = ℬ.    

Proposition 5.2.5 

For two A-TSs (𝒳, 𝒯1)  and (𝒴, 𝒯2) , a map 𝑓  from 𝒯1  to 𝒯2  is anti-continuous iff 

(𝑓−1(ℬ))𝐴𝑛𝑡𝑖−𝑐𝑙 ⊆ 𝑓−1(ℬ𝐴𝑛𝑡𝑖−𝑐𝑙) for each A-C subset ℬ of 𝒴. 

Proof: 

Assume 𝑓  to be anti-continuous, then ℬ𝐴𝑛𝑡𝑖−𝑐𝑙 is A-C with respect to 𝒯2  and so by 

definition 1.6.25, 𝑓−1(ℬ𝐴𝑛𝑡𝑖−𝑐𝑙) is A-C with respect to 𝒯1 and hence 

[𝑓−1(ℬ𝐴𝑛𝑡𝑖−𝑐𝑙)]𝐴𝑛𝑡𝑖−𝑐𝑙 = 𝑓−1(ℬ𝐴𝑛𝑡𝑖−𝑐𝑙).  

Now, ℬ ⊆ ℬ𝐴𝑛𝑡𝑖−𝑐𝑙 and so, 𝑓−1(ℬ) ⊆ 𝑓−1(ℬ𝐴𝑛𝑡𝑖−𝑐𝑙) 

⇒ (𝑓−1(ℬ))𝐴𝑛𝑡𝑖−𝑐𝑙 ⊆ [𝑓−1(ℬ𝐴𝑛𝑡𝑖−𝑐𝑙)]𝐴𝑛𝑡𝑖−𝑐𝑙, [by proposition 4.3.3 (iii)] 

But [𝑓−1(ℬ𝐴𝑛𝑡𝑖−𝑐𝑙)]𝑁𝑡−𝑐𝑙 = 𝑓−1(ℬ𝐴𝑛𝑡𝑖−𝑐𝑙), so (𝑓−1(ℬ))𝐴𝑛𝑡𝑖−𝑐𝑙 ⊆ 𝑓−1(ℬ𝐴𝑛𝑡𝑖−𝑐𝑙). 
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Conversely, let the condition hold and let 𝒞  be any A-CS with respect to 𝒯2  so that 

𝒞 𝐴𝑛𝑡𝑖−𝑐𝑙 = 𝒞. Now, by condition (𝑓−1(𝒞))𝐴𝑛𝑡𝑖−𝑐𝑙 ⊆ 𝑓−1(𝒞 𝐴𝑛𝑡𝑖−𝑐𝑙) = 𝑓−1(𝒞) 

That is, (𝑓−1(𝒞))𝐴𝑛𝑡𝑖−𝑐𝑙 ⊆ 𝑓−1(𝒞). 

But, 𝑓−1(𝒞) ⊆ (𝑓−1(𝒞))𝐴𝑛𝑡𝑖−𝑐𝑙, [by proposition 4.3.3 (i)] 

Thus (𝑓−1(𝒞))𝐴𝑛𝑡𝑖−𝑐𝑙 = 𝑓−1(𝒞), thereby showing 𝑓−1(𝒞) to be A-C with respect to 𝒯1 

and hence as per definition 1.6.25, the map 𝑓 is anti-continuous.   

Remark 5.2.2 

The above proposition does not hold if the subset ℬ of 𝒴 is not an A-CS. 

Proposition 5.2.6 

For two A-TSs (𝒳, 𝒯1)  and (𝒴, 𝒯2) , a map 𝑓  from 𝒯1  to 𝒯2  is anti-continuous iff 

𝑓(𝒞 𝐴𝑛𝑡𝑖−𝑐𝑙) ⊆ [𝑓(𝒞)]𝐴𝑛𝑡𝑖−𝑐𝑙  for any A-C subset 𝒞 of 𝒳. 

Proof: 

Assume 𝑓 to be anti-continuous and 𝒞 is some A-C subset of 𝒳 and let 𝑓(𝒞) = ℬ ⊆ 𝒴. 

Then proposition 5.2.6 gives (𝑓−1(ℬ))𝐴𝑛𝑡𝑖−𝑐𝑙 ⊆ 𝑓−1(ℬ𝐴𝑛𝑡𝑖−𝑐𝑙) 

⇒ [𝑓−1(𝜂(𝒞))]𝐴𝑛𝑡𝑖−𝑐𝑙 ⊆ 𝑓−1[𝑓(𝒞))𝐴𝑛𝑡𝑖−𝑐𝑙] 

⇒ 𝑓−1(𝑓(𝒞 𝐴𝑛𝑡𝑖−𝑐𝑙)) ⊆ 𝑓−1[(𝑓(𝒞))𝐴𝑛𝑡𝑖−𝑐𝑙], since 𝑓(𝒞) = 𝑓(𝒞 𝐴𝑛𝑡𝑖−𝑐𝑙) 

Thus, 𝑓(𝒞 𝐴𝑛𝑡𝑖−𝑐𝑙) ⊆ [𝑓(𝒞)]𝐴𝑛𝑡𝑖−𝑐𝑙 

Conversely, let the condition hold and assume ℬ to be some A-CS with respect to 𝒯2, 

then 𝑓−1(ℬ) ⊆ 𝒳.  

Now, by the condition, we have 𝑓((𝑓−1(ℬ))𝐴𝑛𝑡𝑖−𝑐𝑙) ⊆ [𝑓(𝑓−1(ℬ))]𝐴𝑛𝑡𝑖−𝑐𝑙 

    ⇒ 𝑓((𝑓−1(ℬ))𝐴𝑛𝑡𝑖−𝑐𝑙) ⊆ 𝑓(𝑓−1(ℬ𝐴𝑛𝑡𝑖−𝑐𝑙)) 

    ⇒ (𝑓−1(ℬ))𝐴𝑛𝑡𝑖−𝑐𝑙 ⊆ 𝑓−1(ℬ), given ℬ is A-C  

But, 𝑓−1(ℬ) ⊆ (𝑓−1(ℬ))𝐴𝑛𝑡𝑖−𝑐𝑙, [by proposition 4.3.3 (i)] 

Hence, we get (𝑓−1(ℬ))𝐴𝑛𝑡𝑖−𝑐𝑙 = 𝑓−1(ℬ)  thereby showing 𝑓−1(ℬ) to be A-C with 

respect to 𝒯1 and hence as per definition 1.6.25, the function 𝑓 is anti-continuous. 

Proposition 5.2.7 

For two A-TSs (𝒳, 𝒯1)  and (𝒴, 𝒯2) , a map 𝑓  from 𝒯1  to 𝒯2  is anti-continuous if 

𝑓−1(𝒜𝐴𝑛𝑡𝑖−𝑖𝑛𝑡) = [𝑓−1(𝒜)]𝐴𝑛𝑡𝑖−𝑖𝑛𝑡  for any A-O subset 𝒜 of  𝒴. 

Proof: 
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Let the condition hold and assume that ℬ is some A-OS in 𝒯2 so that ℬ𝐴𝑛𝑡𝑖−𝑖𝑛𝑡 = ℬ, 

then by the given condition we have:  

𝑓−1(ℬ𝐴𝑛𝑡𝑖−𝑖𝑛𝑡) = [𝑓−1(ℬ)]𝐴𝑛𝑡𝑖−𝑖𝑛𝑡,  

Or, 𝑓−1(ℬ) = [𝑓−1(ℬ)]𝐴𝑛𝑡𝑖−𝑖𝑛𝑡  

This shows that 𝑓−1(ℬ) is A-O in 𝒯1 and hence as per definition 1.6.25 the map 𝑓 is 

anti-continuous. 

Definition 5.2.1 

For two A-TSs (𝒳, 𝒯1) and (𝒴, 𝒯2), a map 𝑓  from 𝒯1  to 𝒯2  is termed an A-O map if 

image of any  𝒯1-A-OS is  𝒯2-A-OS. 

Definition 5.2.2 

For two A-TSs (𝒳, 𝒯1) and (𝒴, 𝒯2), a map 𝑓 from 𝒯1 to 𝒯2 is called an A-C map if image 

of any  𝒯1-A-CS is 𝒯2-A-CS. 

                   

 

 

 

 

 


