2015

ZOOLOGY

Paper: 301

BIOCHEMISTRY

Full Marks: 80

Time: 3 hours

The figures in the margin indicate full marks for the ruestions

1) Answer the following multiple choice questions (any eight)

1 x 8=8

- i) In the hypoxic condition, NAD+ is regenerated from NADH by reduction of
- a) Phosphoenol pyruvate to pyruvate
- b) Pyruvate to Lactate
- c) Pyruvate to Acetyl CoA
- d) None of these
- ii) Which among these is not a prosthetic group of Pyruvate Dehydrogenase?
- a) TPP
- b) FAD
- c) FeS

d)	NAD 1	a)	Thiamine	
ii)	In Kreb's cycle the second oxidative decarboxylation	b)	Uracil	
	occurs during the reaction step of	c)	Flavin	
a)	α-Ketoglutarate → Succinyl CoA	d)	None of these	1
b)	Succinyl CoA → Succinate	vii)	In these, which amino acid do have the nega	ative
c)	Isocitrate → α-Ketoglutarate		R-group	
d)	Fumarate → Malate 1	a)	Lysine	
iv)	The glycogen phosphorylase during glycogenolysis acts	b)	Histidine	
	repetitively on the non-reducing ends of glycogen	c)	Arginine	
	branch until it reaches	d)	Asparate	1
a)	6 glucose residues away from (α 1-6) branch	viii)	Proline has the least proclivity to form α -helices	dur-
b)	5 glucose residues away from (α 1-6) branch	!	ing protein folding because	
c)	4 glucose residues away from (α 1-6) branch	a)	Its N-atom is part of a rigid ring, thus N-C $_{\alpha}$ b	ond
d)	None of these		rotation is not possible	
v)	Mitochondrial membrane has no transporter for	b)	It has no substitute H to participate in H-bond v	with
	oxaloacetate, so before export to the cytosol, oxalo-	!	other residue	
	acetate formed from pyruvate must be converted to	c)	Both (a) & (b)	
a)	Lactate	d)	None of these	1
b)	Malate	ix)	How many amino acid residues are generally foun	ıd in
c)	Both (a) & (b)		complete one turn of α-helix structure of pro-	tein
d)	None of these		folding?	
vi)	Wernicke-Korsakoff Syndrome is a disorder caused	a)	3.6	
	by severe deficiency of	b)	4.9	
	$(2) \qquad \qquad \mathbf{p}_{TO}$		(3) P.7	r.o.

P.T.O.

	(C)	5.4	
	d)	5.0	1
	x)	How many cycles do C ₁₉ fatty acid undergoe	s to give
		last one Acetyl CoA and one Propinoyl CoA	
	a)	11	
	b)	10	
	c)	9	
	d)	8	1
2)	Ans	wer the following short type questions (any five) 2	2 × 5=10
	i)	What is Transmethylation?	2
	ii)	What do you mean by Allosteric enzymes?	2
	iii)	What is the significance of Malonyl CoA in bio	osynthe-
		sis of fatty acid?	2
	iv)	What do you mean by Ketosis?	2
	v)	How relative concentration on NADPH and I	NADP+
		in cytosol does determine pathway of Glu	ucose 6
		Phosphate?	2
	vi)	What is the role of ATP cycle in biological sys	tem? 2
3)	Ansv	werthe following (c)	x 4=20
	i)	How triacylglycerol gets activated and transpor	ted into
		the matrix of mitochondria?	5
	ii)	Explain how NADPH and glutathione can pre-	event or
		undo the oxidative damage to proteins?	5
		(4)	P.T.O.
			1 · 1 · U ·

iii)	Describe the particular non-identical steps	of gluco-
	neogenesis which does not get catalyzed by	the same
	enzymes of glycolysis.	5
iv)	Describe the Glycerol Phosphate shuttle and	its signifi-
	cance	5
v)	What are the different forces which cont	ribute on
	specific folding or structure of the proteins?	5
Answ	ver the following long type question (any two)	9 × 2=18
i)	Explain the non-oxidative phase and non-	oxidative
	Phase of the Pentose Phosphate pathway.	What are
	the significance of this pathway?	(3+4+2)
ii)	What do you mean by Free Energy? What a	re the dif-
	ferences between exergonic & exothermic and	d between
	endergonic and endothermic reactions?	(3+3+3)
iii)	Describe the different complexes and prosther	tic groups

of the Electron Transport Chain. How does all these

What are the different physio-chemical factors that

affect the enzyme activity? Derive the Michaelis Menten

Describe the $\,\beta$ -oxidation pathway of the unsaturated

fatty acids. How biosynthesis of Fatty acids does get

(5)

complexes contributes in ATP synthesis?

Answer the following very long type question $12 \times 2=24$

4)

5)

i)

ii)

equation.

(3+2+4)

(6+6)

P.T.O.